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Abstract

The production of heterologous disulfide bonded proteins in bacteria remains a biotechnological challenge. A rapid
literature survey results in the identification of some interesting proposals, such as the option of producing
functional proteins in the cytoplasm in the presence of sulfhydryl oxidases and isomerases. Furthermore, an
ever-increasing number of applications refers to recombinant proteins displayed at the bacterial surface. Time will
tell whether these developments will lead to universally accepted laboratory protocols.
Circumventing the obstacle
The time is ripe for an update on the innovations intro-
duced for an effective bacterial production of heterol-
ogous polypeptides that require the formation of
disulfide bonds in order to reach their stable native con-
formation [1]. Over the last three years, Microbial Cell
Factories (MCF) has been very alert to the developments
in the field and published articles that are representative
of the alternative strategies proposed to circumvent the
objective reluctance of bacteria to produce this class of
proteins. It is possible to group them according to the
proposed approach.

a) Be fit: optimize the conditions
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Trivial as it may sound, optimized cell factories are
more efficient than unsuitable bacteria, but what
features make them perform better? For instance, it
is known that recombinant expression in bacteria
can be substantially improved by the co-expression
of molecular foldases and the addition of osmolytes,
albeit the outcome is extremely protein-dependent
[1]. From this perspective, the data that correlate for
the first time the stabilizing effects of different
chemical chaperones to specific molecular features of
the target proteins are very interesting and open the
possibility of predicting the optimal mix for any
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reproduction in any medium, provided the origin
given polypeptidic sequence to be expressed [2].
Another approach considers the preparation of large
collections of mutants covering the whole genome
and that allow for the selection of ad hoc strains with
improved capacities for extremely specialized
metabolic tasks [3-6]. Nevertheless, it is necessary to
bear in mind that the expression strain represents
only one of the production factors and that codon
optimization and the co-expression of stabilizing
factors can be critical for the goal accomplishment
[7,8].

b) In the periplasm, but better than ever
Recombinant disulfide bonded proteins have been
preferentially produced in the bacterial periplasmic
space because of its favourable redox conditions.
However, the method is notorious for resulting in
low yields and proteins that often fail to fold
correctly [1]. Recently, the work of Ow et al. [9] has
shown that protein misfolding and aggregation in the
periplasm reduced significantly the cell viability and
that overexpressing the periplasmic chaperones Skp
or FkpA could reverse both these shortcomings.
Yields can be increased and purification procedures
improved also by selecting the most suitable leader
peptide. For instance, the domain D of protein A
allows for the stabilization, translocation and
straight-forward purification of fused proteins [10],
whereas SRP leader peptides were more effective
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than SEC ones for secreting recombinant antibodies
with very favourable thermodynamic and that started
being partially folded in the cytoplasm. Since
linearization is a strict requisite for polypeptide
transfer into the periplasm, antibodies bound to the
SEC secretion route were trapped in the cytoplasm
because they began folding after synthesis while the
simultaneity of synthesis and translocation assured
by the SRP pathway resulted in higher yields [11].

c) Ejected in the All: harnessing the secretion pathways
Bacteria have the capacity of secreting proteins into
the external medium and this alternative has been
evaluated in the past for biotechnological
applications [1]. The main advantages are: i)
oxidizing environment; ii) avoiding of saturation due
to the large available volume; iii) simplified protein
purification due to the low amount of contaminants.
Extracellular release can be also exploited for
therapeutic aims, as it is the case of an anti-
trypanosoma recombinant antibody expressed in the
symbiont bacteria (Sodalis glossinidius) of tsetse fly
[12]. Although the secretion mechanisms are not
always well characterized [13], the systems set for
accumulating the target proteins in the cell
supernatant never seemed as popular as recently.
E. coli alpha-hemolysin type I and autotransporter
secretion systems [14,15], Salmonella flagellar type
III [16] as well as the combinations leading to target
protein cell display in different bacteria [17-22]
underline the present available methodological
variety. In particular, the display systems combined
to flow-cytometry and magnetic cell sorting seem to
be very promising for large-scale screenings of
polypeptides with desired characteristics. In such a
way, antigenic and curative peptides to be used for
vaccination have been identified [22] and E. coli
displaying both Mycobacterium tuberculosis and
Salmonella enterica vaccine targets have been
foreseen as live vaccines [18,20]. Finally, bacteria
displaying recombinant antibodies were directly
spotted on chips for preparing effective diagnostic
microarrays without the necessity of any purification
step [23].

d) Inverting the paradigm: a new perspective for
cytoplasmic production
The work began twenty years ago for elucidating the
mechanisms regulating the redox conditions in
bacteria [1,24] finally resulted in the
commercialization of different strains with
diminished cytoplasmic reductive pathways. SHuffle
is the last proposal in the field, a strain that combine
improved oxidative conditions with the cytoplasmic
expression of the DsbC isomerase [25]. As it is
(always) the case, the success of this strain will
remain construct-dependent, as illustrated by the
deceiving results obtained when it was compared to
Origami 2 [26] or tested for the cytoplasmic
expression of Metarhizium anisopliae, a protein for
which the fusion to the MBP-tag and the
chaperoning features of DsbC were extremely more
profitable [27]. Two papers from Ruddock’s group
[28,29] probably represent the real break-through
concerning the production of disulfide-bond-
dependent proteins in bacterial cytoplasm. For the
first time, it was demonstrated that disulfide bonds
could be correctly formed in this cell compartment
without modifying the redox conditions, but simply
forcing the disulfide bond formation in the presence
of over expressed sulfhydryl oxidase and disulfide-
bond isomerases. In this way, the cell metabolism is
not compromised as it is the case in oxidizing strains
[26] and enables yields that have never been
obtained in mutant strains with reducing cytoplasm
or when only the restricted periplasmic space is
available for recombinant protein accumulation. This
approach has already successfully repeated in several
independent labs [30,31], a promising indication that
it may represent a general reliable method for
protein production.
Conclusions
Recombinant protein production is still far from being a
mature discipline and the innovative contributions
briefly listed in this compendium show clearly that the
platform constantly moves forward. Some tactics, such
as secretion strategies and combinatorial approaches,
seem to gain attention whereas other methods, such as
refolding from inclusion bodies [32], have not signifi-
cantly developed lately. The scope of this short update is
to show tendencies rather than to add another exhaust-
ive review to the list and at MCF we are interested in
the feedback of our readers concerning this form of
communication.
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