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Abstract
The limited fossil fuel prompts the prospecting of various unconventional energy sources to take
over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive
alternate source. Attributed by its numerous advantages including those of environmentally clean,
efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate.
Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the
traditional ways of hydrogen production (chemical, photoelectrical), Cyanobacterial hydrogen
production is commercially viable. This review highlights the basic biology of cynobacterial
hydrogen production, strains involved, large-scale hydrogen production and its future prospects.
While integrating the existing knowledge and technology, much future improvement and progress
is to be done before hydrogen is accepted as a commercial primary energy source.

Review
Molecular hydrogen is one of the potential future energy
sources as an alternative to the limited fossil fuel resources
of today. Its advantages as fuel are numerous: it is eco-
friendly, efficient, renewable, and during its production
and utilization no CO2 and at most only small amounts of
NOx are generated [1]. By the virtue of all these attributes
the hydrogen gas can be used as an energy source. Hydro-
gen gas can be prepared in many conventional ways
(including those of photoelectrochemical or thermo-
chemical processes) for its large-scale utilization. In this
review we aim to discuss about photobiological hydrogen
production by cyanobacteria and the scientific and techni-
cal aspects of large-scale utilization of produced hydrogen
for various applications. We also have described about
salient features of cyanobacterial enzymatic system, differ-
ent species and strains producing hydrogen, parameters

controlling the hydrogen production and large-scale pro-
duction utilizing photobioreactors. Cyanobacteria are
thought to play a crucial role in the Precambrian phase by
contributing oxygen to the atmosphere [2]. Under certain
conditions the cyanobacterial species instead of reducing
CO2, consume biochemical energy to produce molecular
hydrogen.

Hydrogen yielding species of cyanobacteria
Cyanobacteria form a large and diverse group of oxygenic
photoautotrophic prokaryotes, many of which have the
ability to produce hydrogen (Table 1). Hydrogen produc-
tion has been studied in a very wide variety of cyanobac-
terial species and strains. Hydrogen production occurs
within at least 14 Cyanobacteria genera, under a vast
range of culture conditions [3]. Although a complete
description of all species and their taxonomic details are
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Table 1: Organism that produces hydrogen

Organism name Organism 
description

Maximum 
Hydrogen 
evolution

Growth condition H2 evolution
 assay condition

Reference

Anabaena cylindrica B-
629

Marine cyanobacteria 0.103 µmol/mg dry 
wt/h

Air contained 5% CO2; 
7000 lx
at the surface of culture 
vessels

Argon environment with 
3% CO2 4000 lx
at the surface of the culture 
vessel

9

Oscillatoria brevis B-
1567

Marine cyanobacteria 0.168 µmol/mg dry 
wt/h

Air contained 5% CO2; 
7000 lx at
the surface of culture 
vessels

Argon environment with 
3% CO2 4000 lx at
the surface of the culture 
vessel

9

Calothrix scopulorum 
1410/5

Marine cyanobacteria 0.128 µmol/mg dry 
wt/h

Air contained 5% CO2; 
7000 lx at
the surface of culture 
vessels

Argon environment with 
3% CO2 4000 lx at
the surface of the culture 
vessel

9

Calothrix membrnacea 
B-379

Marine cyanobacteria 0.108 µmol/mg dry 
wt/h

Air contained 5% CO2; 
7000 lx at
the surface of culture 
vessels

Argon environment with 
3% CO2 4000 lx at
the surface of the culture 
vessel

9

Oscillatoria sp. Miami 
BG7

Marine cyanobacteria 0.250 µmol/mg dry 
wt/h

Air; 100 µE/m2/s; NH4Cl
(25 mg/l) used as combined 
nitrogen source

Ar (100%); 90 µE/m2 11
day old cells 37°C

10

Oscillatoria limosa Marine cyanobacteria 0.83 µmol/mg chl a/h Air; incubation in 16 h light,
8 h darkness cycles

Same as culture condition 11

Cyanothece 7822 Marine unicellular 
cyanobacteria

0.92 µmol/mg chl a/h N2 with 5% CO2 Same as culture condition 12

Anabaena sp. PCC 
7120

Heterocystous 
cyanobacteria

2.6 µmol/mg chl a/h Air; 20 µE/m2/s Air; 60 µE/m2/s 13

Anabaena cylindrica 
IAMM-1

Heterocystous 
cyanobacteria

2.1 µmol/mg chl a/h Air; 20 µE/m2/s Air; 60 µE/m2/s 13

Anabaena variabilis 
IAMM-58

Heterocystous 
cyanobacteria

4.2 µmol/mg chl a/h Air; 20 µE/m2/s Air; 60 µE/m2/s 13

Anabaena cylindrica 
UTEX B 629

Heterocystous 
cyanobacteria

0.91 µmol/mg chl a/h Air; 20 µE/m2/s Air; 60 µE/m2/s 13

Anabaena flos-aquae 
UTEX 1444

Heterocystous 
cyanobacteria

1.7 µmol/mg chl a/h Air; 20 µE/m2/s Air; 60 µE/m2/s 13

Anabaena flos-aquae 
UTEX LB 2558

Heterocystous 
cyanobacteria

3.2 µmol/mg chl a/h Air; 20 µE/m2/s Air; 60 µE/m2/s 13

Anabaenopsis circularis 
IAM M-13

Heterocystous 
cyanobacteria

0.31 µmol/mg chl a/h Air; 20 µE/m2/s Air; 60 µE/m2/s 13

Nostoc muscorum IAM 
M-14

Heterocystous 
cyanobacteria

0.60 µmol/mg chl a/h Air; 20 µE/m2/s Air; 60 µE/m2/s 13

Nostoc linckia IAM M-
30

Heterocystous 
cyanobacteria

0.17 µmol/mg chl a/h Air; 20 µE/m2/s Air; 60 µE/m2/s 13

Nostoc commune IAM 
M-13

Heterocystous 
cyanobacteria

0.25 µmol/mg chl a/h Air; 20 µE/m2/s Air; 60 µE/m2/s 13

Anabaena variabilis 
AVM13

Heterocyst 
filamentous

68 µmol/mg chl a/h Air and 1% CO2;
100 µE/m2/s

14

Anabaena variabilis 
PK84

Heterocyst 
filamentous

32.3 µmol/mg chl a/h Air and 2% CO2; 
continuous tarbidostat
mode; 113 µE/m2/s

Argon environment. 15

Anabaena variabilis 
PK84

Heterocyst 
filamentous

167.6 µmol/mg chl a/h 73%Ar, 25%N2, 2% CO2;
90 µE/m2/s

93%Ar, 5%N2, 2% CO2;
90 µE/m2/s

16

Anabaena variabilis 
PK84

Heterocyst 
filamentous

0.11 µmol/mg chl a/h Air and 2% CO2;
outdoor condition

Air and 2% CO2;
outdoor condition; 400 W/
m2

17

Anabaena variabilis 
ATCC 29413

Heterocyst 
filamentous

45.16 µmol/mg chl a/h 73%Ar, 25%N2, 2% CO2;
90 µE/m2/s

93%Ar, 5%N2, 2% CO2;
90 µE/m2/s

16

Anabaena variabilis 
ATCC 29413

Heterocyst 
filamentous

0.05 µmol/mg dry wt/
h

5000 lx at the surface
of culture vessels.

Ar and 5% CO2;
5000 lx addition of Tween 
85 (77 mM)

18
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Anabaena variabilis 
ATCC 29413

Heterocyst 
filamentous

39.4 µmol/mg chl a/h Air and 2% CO2; 
continuous
tarbidostat mode; 113 µE/
m2/s

Argon environment 15

Anabaena variabilis 
1403/4B

Heterocyst 
filamentous

20 µmol/mg chl a/h Air; 15 µE/m2/s No gas phase; cells 
immobilized in hollow fiber;
25 µE/m2/s on the top 
surface
and 13 µE/m2/s on bottom 
surface of reactor

19

Anabaena azollae Heterocyst 
filamentous

38.5 µmol/mg chl a/h Air and 1% CO2;
100 µE/m2/s

Argon environment. 16

Anabaena variabilis 
PK17R

Heterocyst 
filamentous

59.18 µmol/mg chl a/h 73%Ar, 25%N2, 2% CO2;
90 µE/m2/s

93%Ar, 5%N2, 2% CO2;
90 µE/m2/s

16

Anabaena variabilis 
SPU 003

Heterocyst 
filamentous 
cyanobacteria

5.58 nmol/mg dry wt/
h

Air; incubation in 16 h light
(3000 lx light intensity),
8 h darkness cycles;
mannose used as carbon 
source.

Same as culture condition 20

Synechococcus PCC 
6830

Non-nitrogen-fixing 
unicellular 
cyanobacteria

0.26 µmol/mg chl a/h Air; photon fluence rate
20 µE/m2/s

Ar with CO (13.4 µmol),
C2H2 
(1.34 µmol); darkness.

21

Synechococcus PCC 
602

Non-nitrogen-fixing 
unicellular
cyanobacteria

0.66 µmol/mg chl a/h Air; photon fluence rate 
20 µE/m2/s

Ar with CO (13.4 µmol);
photon fluence rate was
20–30 µE/m2/s

21

Synechococcus PCC 
6307

Non-nitrogen-fixing
unicellular 
cyanobacteria

0.02 µmol/mg chl a/h Air; photon fluence rate
20 µE/m2/s

Ar (100%) with photon 
fluence
rate 20–30 µE/m2/s

21

Synechoccus PCC 6301 Non-nitrogen-fixing
unicellular 
cyanobacteria

0.09 µmol/mg chl a/h Air; photon fluence rate
20 µE/m2/s

Ar with C2H2 (1.34 µmol);
fluence rate was 20–30 µE/
m2/s

21

Microcystis PCC 7820 non-nitrogen-fixing
unicellular 
cyanobacteria

0.16 µmol/mg chl a/h Air; photon fluence rate 20
µE/m2/s

Ar with CO (13.4 µmol),
C2H2 (1.34 µmol);
photon fluence rate was 
20–30 µE/m2/s

20

Gloebacter PCC 7421 Non-nitrogen-fixing
unicellular 
cyanobacteria

1.38 µmol/mg chl a/h Air; photon fluence rate
20 µE/m2/s

Ar with CO (13.4 µmol),
C2H2 (1.34 µmol);
photon fluence rate was 
20–30 µE/m2/s

20

Synechocystis PCC 
6308

Non-nitrogen-fixing 
unicellular 
cyanobacteria

0.13 µmol/mg chl a/h Air; photon fluence rate
20 µE/m2/s

Ar with CO (13.4 µmol),
C2H2 (1.34 µmol);
photon fluence rate was 
20–30 µE/m2/s

21

Synechocystis PCC 
6714

Non-nitrogen-fixing
unicellular 
cyanobacteria

0.07 µmol/mg chl a/h Air; photon fluence rate
20 µE/m2/s

Ar with CO (13.4 µmol);
photon fluence rate was 
20–30
µE/m2/s

21

Aphanocapsa montana Non-nitrogen-fixing
unicellular 
cyanobacteria

0.40 µmol/mg chl a/h Air; photon fluence rate 
20 µE/m2/s

Ar (100%); photon fluence 
rate was
20–30 µE/m2/s

21

Gloeocapsa alpicola 
CALU 743

Unicellular non-
diazotrophic
cyanobacteria

0.58 µmol/mg protein Sulphur free 4% CO2;
25 µmol photons/m2/s

Same as culture condition 4

Chroococcidiopsis 
thermalis CALU 758

Unicellular non-
nitrogen-fixing

0.7 µmol/mg chl a/h Ar and1% CO2;
during 20 h.

Same as culture condition 22

Mycrocystis PCC 7806 Unicellular/colony
embedded in matrix

11.3 nmol/mg prot/h Air; incubation in 16 h light,
8 h darkness cycles

Same as culture condition 23

Microcoleus 
chthonoplasts

Mat-building 
cyanobacteria

1.7 nmol/mg prot/h Air; ferric ammonium 
citrate added
(46 µmol) 30 µE/m2/s

Same as culture condition 20

Table 1: Organism that produces hydrogen (Continued)
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beyond the scope of this review but some of them deserve
special mention. Unicellular non-diazotrophic Cyanobac-
teria Gloeocapsa alpicola under sulphur starvation shows
increased hydrogen production [4]. Arthrospira (Spirulina
platensis) can produce hydrogen (1 µmole H2/12 hr/mg
cell dry weight) in complete anaerobic and dark condition
[5]. Another nitrogen-fixing cyanobacterium, Anabaena
cylindrica, produces hydrogen and oxygen gas simultane-
ously in an argon atmosphere for 30 days in light limited
condition [6]. Symbiotic Cyanobacteria within coralloid
roots of the cycads Cycas revoluta (king Sago palm) and
Zamia furfuracea showed a significant in vivo hydrogen
uptake [7]. Anabaena sp. is able to produce significant
amount of hydrogen. Among them nitrogen-starved cells
of Anabaena cylindrica produces highest amount of hydro-
gen (30 ml of H2/lit culture/hour). Hydrogenase-deficient
cyanobacteria Nostoc punctiforme NHM5 when incubated
under high light for a long time, until the culture was
depleted of CO2 shows increase in hydrogen production
[8].

Enzyme systems for hydrogen production
Cyanobacteria are photoautotrophic microorganisms [9-
23] that use two sets of enzymes to generate hydrogen gas
(Table 1). The first one is Nitrogenase and it is found in
the heterocysts of filamentous cyanobacteria when they
grow under nitrogen limiting conditions. Hydrogen is
produced as a byproduct of fixation of nitrogen into
ammonia. The reaction consumes ATP and has the gen-
eral form:

A Nitrogenase enzyme consists of two parts:one is dinitro-
genase (MoFe Protein, encoded by the genes nifD and
nifK, α and β respectively) and the other is dinitrogenase
reductase (Fe Protein, encoded by nifH). Dinitrogenase is
a α2β2 heterotetramer, having molecular weight of about
220 to 240 kDa respectively, breaks apart the atoms of
nitrogen. Dinitrogenase reductase is a homodimer of
about 60 to 70 kDa and plays the specific role of mediat-
ing the transfer of electrons from the external electron
donor (a ferredoxin or a flavodoxin) to the dinitrogenase
[25-27]. There are three types of dinitrogenase found in
Nitrogenase, which vary depending on the metal content.
Type one contains molybdenum (Mo) [30], type two con-
tains vanadium (V) instead of Mo [29,30], and type three
has neither Mo nor V but it contains iron (Fe) [31,32].

The other hydrogen-metabolizing/producing enzymes in
cyanobacteria are Hydrogenases; they occur as two dis-
tinct types in different cyanobacterial species. One type of
them, uptake hydrogenase (encoded by hupSL) [33], has
the ability to oxidize hydrogen and the other type of
hydrogenase is reversible or bidirectional hydrogenase

(encoded by hoxFUYH) and it can either take up or pro-
duce hydrogen. Uptake hydrogenase enzymes are found
in the thylakoid membrane of heterocysts from filamen-
tous cyanobacteria, where it transfers the electrons from
hydrogen for the reduction of oxygen via the respiratory
chain in a reaction known as oxyhydrogenation or Knall-
gas reaction. The enzyme consists of two subunits. The
hupL-coded protein is responsible for the up taking hydro-
gen and the smaller subunit that is coded by hupS looks
after the reduction affair. The hydrogen formed is usually
re oxidized by an uptake hydrogenase via a Knallgas reac-
tion and hence there is no net H2 production in strains
with uptake hydrogenases under ambient conditions. So
it is counterproductive when the goal is to produce hydro-
gen on a commercial scale. The reaction catalyzed by the
uptake hydrogenase takes the following form:

The biological role of bidirectional or reversible hydro-
genase, is poorly understood and thought to control ion
levels in the organism. Reversible hydrogenase is associ-
ated with the cytoplasmic membrane and likely functions
as an electron acceptor from both NADH and H2 [34]. The
reversible hydrogenase is a multimeric enzyme consisting
of either four or five different subunits apparently
depending on the species [34,35]. Molecularly it is a
[NiFe]-hydrogenase of the NAD(P)+ reducing type consist-
ing of a hydrogenase dimmer coded by hoxYH gene. Mat-
uration of reversible hydrogenases requires the action of
several auxillary proteins collectively termed as hyp (prod-
ucts of genes: hypF, hypC, hypD, hypE, hypA, and hypB) [36].
Unlike uptake hydrogenase, reversible hydrogenases are
helpful in hydrogen production.

Hydrogen photo evolution catalyzed by nitrogenases or
hydrogenases can only function under anaerobic condi-
tions due to their extreme sensitivity to oxygen. Since oxy-
gen is a byproduct of photosynthesis, organisms have
developed the following spatial and temporal strategies to
protect the enzyme from inactivation by oxygen, these are:

(a) Heterocyst-containing cyanobacteria physically sepa-
rate oxygen evolution from nitrogenase activity by segre-
gating oxygenic photosynthetic activity in vegetative cells
and nitrogenase activity in heterocystis with reduced oxy-
gen-permeability [37] and

(b) Non-heterocystous cyanobacteria separate oxygen-
evolution from nitrogenase activity by performing these
functions during light and dark periods respectively [38].

Important parameters for hydrogen production: Effi-
ciency of hydrogen production depends on several factors

16ATP + 16H O + N  + 10H + 8e 16ADP + 162 2
+ - Nitrogenase → PPi + 2NH + H  [24]4

+
2

H 2H 2e2
Hydrogenase + - → +
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or parameters that are more critical when hydrogen pro-
duction is aimed at a large scale.

Various parameters influence hydrogen production in dif-
ferent ways, a few selected parameters are presented with
examples:

A. Environmental conditions: Several environmental con-
ditions such as light, temperature, salinity, nutrient avail-
ability, gaseous atmosphere play a role in hydrogen
production. Requirement of different cyanobacterial spe-
cies are different for optimum hydrogen production.

I) Light: Although most cyanobacterial species preferen-
tially absorb red light near 680 nm [39], light requirement
for hydrogen production varies among different species of
cyanobacteria. While Spirulina (Arthrospira platensis) pro-
duces hydrogen under anaerobic conditions, both in the
dark and in the light [5] but several other species produces
hydrogen only in the presence of light [40]. Hydrogen
production mediated by native hydrogenases in Synechoc-
occus PCC7942 occurs under in the dark under anaerobic
condition [41]. Spirulina platensis can produce hydrogen
optimally at 32°C in complete anaerobic and dark condi-
tion [5]. The highest volumetric hydrogen production was
found in Anabaena variabilis ATCC 29413 and in its
mutant PK84 [42]. Hydrogen evolution by Anabaena vari-
abilis PK84 with air containing 2% CO2 was stimulated by
light [42]. Hydrogen production in Nostoc muscorum is cat-
alyzed by nitrogenase more hydrogen is produced in this
strain in the light than in the dark [43]. Anabaena cylin-
drica, produces hydrogen under an argon atmosphere for
30 days in light limited (luminous intensity 6.0 W/m-2)
and 18 days under elevated light (luminous intensity 32
W/m-2) [6,44]. Continuous hydrogen production by Ana-
baena cylindrica for a prolonged period under light limited
condition occurs in the absence of exogenous nitrogen
[44]. The effect of light on nitrogenase mediated hydrogen
production by most cyanobacteria is well studied [40].
Nitrogenase function is saturated only at much higher
light intensities than required for optimal growth. Thus
hydrogen production rates can be doubled if the lumi-
nous intensity exposure to cultures is changed from 20 W/
m2 to 60 W/m2 [44].

II) Temperature: The optimum temperature for hydrogen
production for most cyanobacterial species is between
30–40°C and varies from species to species of cyanobac-
teria. For example, Nostoc cultured at 22°C showed higher
rates of hydrogen production than at 32°C [45], while
Nostoc muscorum SPU004 showed optimum hydrogen
production at 40°C [46]. Anabaena variabilis SPU 003 on
the other hand show optimum hydrogen production at
30°C [22,23].

III) Salinity: Salinity does effect hydrogen production by
cyanobacteria [43]. In general fresh water cyanobacteria
shows lower rate of hydrogen production with increase in
salinity. This is occurs likely because of diversion of energy
and reductants for extrusion of Na+ ions from within the
cells or prevention of Na+ influx [47].

IV) Micronutrients: Trace elements such as cobalt (Co),
copper (Cu), molyblednum (Mo), zinc (Zn), and nickel
(Ni) effects hydrogen production [48]. Many of these met-
als have shown pronounced enhancement of hydrogen
production and thought to be due to their involvement in
the nitrogenase enzyme. For example, Anabaena variabilis
SPU003 is highly sensitive to Co, Cu, Mn, Zn, Ni, Fe ions
and shows no hydrogen production at concentrations
below 10 mM for these ions [20]. A culture of Anabaena
cylindrica grown with 5.0 mg of Ferric ions per liter pro-
duce hydrogen at a rate about twice that of culture with
0.5 mg of Ferric ions per liter [6].

V) Carbon source: Carbon sources are also known to
influence the hydrogen production considerably by influ-
encing nitrogenase activity [46]. Presence of different car-
bon sources cause variation in electron donation
capabilities by the cofactor compounds to nitrogenase
thus influencing hydrogen production [46].

VI) Nitrogen source: Several inorganic nitrogenous com-
pound influence hydrogen production rates in many
ways. Nitrite, nitrate and ammonia have been reported to
inhibit nitrogenase in Anabaena variabilis SPU003 and
Anabaena cylindrical [49,46]. Generally all exogenously
added nitrogen sources inhibit nitrogenase synthesis [50].
Although in Anabaena cylindrical ammonium addition
(0.2 mM NH4

+) at a given time point eventually sup-
presses hydrogen production, but periodic addition of
lower amounts (0.1 mM ammonium chloride) do not
inhibit hydrogen evolution [6]. However, influence of
nitrogen source does not always part pronounced effects,
and interpretation is not straightforward. While some
studies showed that there are significant differences in
hydrogen production depending on the nitrogen content
of the media [5] while other studies show the reverse [51].
In Anabaena cylindrica culture, oxygen production gets
dominated with the incremental addition of ammonium
chloride (from 0.1 mM to 0.5 mM) [52]. The hydrogen to
oxygen production ratio (4:1) in totally nitrogen starved
condition decrease (1.7:1) when ammonium ions are
added [52].

VII) Molecular nitrogen: Molecular nitrogen is a competi-
tive inhibitor for hydrogen production and removal of
molecular nitrogen if often very necessary for hydrogen
production. Hydrogen production may be considerably
inhibited in presence of molecular nitrogen [9].
Page 5 of 11
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VIII) Effect of oxygen on hydrogen production: Due to
their extreme sensitivity to oxygen, hydrogen photo evo-
lution catalyzed by nitrogenases or hydrogenases can
function only under anaerobic conditions [37] As oxygen
is a byproduct of photosynthesis, nitrogenase-containing
organisms have developed several spatial and temporal
separation/compartmentalization strategies as described
above to protect the enzyme from inactivation by oxygen-
ation [33].

IX) Effect of sulfur on hydrogen production: Sulfur starva-
tion enhances the rate of hydrogen production in several
cyanobacterial species (for example, Gloeocapsa alpicola
and Synechocystis PCC 6803). It is possible to inhibit the
oxygenic photosynthesis and enhance hydrogen produc-
tion by incubating the cynobacteria in nutrients that lack
sulfur [4]. Sulfur is a very important component in the
photosystem II repair cycle and without sulfur the protein
biosynthesis is heavily impaired and production of either
cysteine or methionine becomes impossible. This results
in lack of the D1 protein (32-kDa reaction center protein),
essential for photosystem II and needs to be constantly
replaced [4]. For these reasons during sulfur deprivation
photosynthesis and respiration is decreased, even in the
presence of light. Since photosynthesis decline much
quicker then respiration, thus an equilibrium point is
reached after a while, (usually after 22 hours) and after
that the amount of oxygen that is used in respiration is
greater then the oxygen released by photosynthesis and
the cell become anaerobic and at this point hydrogen pro-
duction occurs in higher amounts reaching peak produc-
tion [4].

X) Effect of Methane: Increased hydrogen production (up
to four times) is observed in Gloeocapsa alpicola and Syne-
chocystis PCC 6803 during dark anoxic incubation when
methane is present and the medium pH is between 5.0–
5.5. The effect of methane on the hydrogen evolution was
maximal during the first hour of the incubation followed
by gradual declination [4].

B. Intrinsic factors affecting hydrogen production: There
are several intrinsic factors such as genetic components or
sensitive proteins in cyanobacteria that may affect hydro-
gen production.

I) Presence of uptake hydrogenase and decreased hydro-
gen yield: The net hydrogen yield is affected in strains con-
taining uptake hydrogenase. Much of the produced
hydrogen is lost due to the activity of the uptake hydroge-
nase [33]. Knocking out the genes coding uptake hydroge-
nase is therefore contemplated to result in higher
hydrogen production in the species of cyanobacteria that
harbor uptake hydrogenase. It is, however, also critical to
over express the genes for bidirectional hydrogenase and

may be achieved by transfecting cyanobacteria with plas-
mids containing particular genes [33].

II) Sensitivity of hydrogenase and nitrogenase to molecu-
lar oxygen: The molecular oxygen acts as an inhibitor for
hydrogenase and nitrogenase. However, innovative tech-
nical interdisciplinary solutions, as described below, are
now available to reduce or eliminate presence of molecu-
lar oxygen and increase yield of hydrogen [37].

a) With the advances in nanotechnology it has become
possible to build semi-permeable membranes around the
organisms. An example is a membrane that discriminates
by size with an active transport system [53]. Nanotechnol-
ogy had made possible creation of cyanobacteria with a
membrane that incorporates an active transport protein
system for the facilitated ejection of oxygen [53]. This sys-
tem would rapidly expel the oxygen that is created during
metabolism and not allow its reentry. Another membrane
is the one that possesses both an oxygen-philic and oxy-
gen-phobic sides [53]. Having the oxygen-philic side fac-
ing the bacteria and the phobic side open to the
environment would facilitate the movement of oxygen
away from the cells allowing the production of hydrogen
to continue without being hindered by the generated oxy-
gen.

b) Problem to oxygen sensitivity can also be addressed by
using sulfur stress phenomenon to down-regulate photo-
synthesis as described before. This creates the anaerobic
conditions required for hydrogen production. This prob-
lem may also be addressed by engineering the native
hydrogenase. Engineering oxygen-tolerant hydrogenase
genes, for example, hydS and hydL from Thiocapsa roseoper-
sicina into sensitive organisms may help reducing the oxy-
gen sensitivity [54]. An expression vector pEX-Tran used
for Synechococcus sp. PCC7942 transformation is readily
available and with minimal modification should be suit-
able for other cyanobacterial systems as well [54].

III) Heterocystous cyanobacteria are more efficient to pro-
duce hydrogen than cyanobacteria with vegetative cells
[39,51]. These types of cyanobacteria do engage in simul-
taneous oxygen and hydrogen production coupled with
CO2 fixation [51]. Problems associated with these types of
Cyanobacteria are, however, high-energy requirement and
separation of hydrogen and oxygen. The over expression
of the genes responsible for changing vegetative state into
heterocyst cell type is hetR (coding for the HetR protein
involved in heterocyst frequency regulation, for example,
in Anabaena sp. PCC 7120). Recombinant strains can be
created with HetR protein harboring vectors that may
allow with variable and controllable heterocyst frequency
[39].
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Bioreactors for cyanobacterial hydrogen production
Bioreactors are essential for large-scale production of
hydrogen. Since light is an essential parameter for cyano-
bacterial growth so all such bioreactors must be transpar-
ent and hence are called photobioreactors [41,55]. All
photobioreactors require adequate entry of light, which
usually is sunlight but in some photobioreactors other
artificial sources of light is also used for providing control-
led light. Inside photobioreactor there should be a photic
zone, close to the illuminated surface and a dark zone, fur-
ther away from this surface. The dark zone is due to light
absorption by the cells and mutual shading. The hydrogen
productivity of a photobioreactor is light limited and
tends to decrease at higher light intensities (Photosynthe-
sis diverts the hydrogen production pathway) hence the
light regime is determined by the light gradient (must be
diluted and distributed as much as possible; absolute dark
condition responsible for highest production). Liquid cir-
culation time or aeration (hydrogen producing enzymes
are oxygen susceptible; anaerobic condition or inert gas
environment is preferred) rate has something to do with
hydrogen productivity. It has followed that cyanobacteria
absorb preferentially red light around 680 nm. To fulfill
this demand Red light panels are constructed in special-
ized bioreactors to provide red light to the culture systems.
As a result of mixing, cells will circulate between the light
and the dark zone of the reactor at a certain frequency and
regular intervals, which is dependent on reactor design
and gas input. The position of the light source as well as
gas liquid hydrodynamics also affects cyanobacterial
growth as well as hydrogen production [56].

Several types of bioreactors have been used for hydrogen
production. These can be mainly divided into three types
of photobioreactors (PBRs): vertical column reactor,
tubular type and flat panel photobioreactor. A reactor for
photobiological hydrogen production must meet several
conditions:

1) Photobioreactor should be an enclosed system so that
the produced hydrogen may be collected without any loss.

2) The reactor design must allow sterilization with con-
venience and ease.

3) To maximize the area of incident light (thus allowing
high growth and hydrogen production) photobioreactor
design should provide high surface to volume ratio.

(a) Vertical column reactor (air-lift loop reactor and bub-
ble column): Such PBRs consists of a transparent column
usually made up of high quality glass and surrounded by
a water jacket that while allowing maintenance of the tem-
perature with circulating water allows adequate entry of
light. Reactor top has provision for medium inlet and out-

lets for the gases such as argon and for the hydrogen. Fresh
medium is added from a reservoir from above the PBR
[57,58]. Microorganisms are inoculated through a septum
that helps maintenance of sterility and prevents contami-
nation. Bottom part of the PBR column retains outlets for
the culture and an inlet/outlet for argon gas. In bubble
columns using sunlight as light source, the presence of gas
bubbles enhances internal irradiance at sunset and sun-
rise. As the position of sun changes from low horizon to
overhead at noon, the bubbles diminish the internal col-
umn irradiance relative to the ungassed state. The biomass
productivity varies substantially during the year the peak
productivity during summer may be several times greater
than in the winter. An example of this type of PBR is the
one used for hydrogen production using Rhodobactor sp.
[41,57,58]. This reactor column was made up of a glass
cylinder with an inner volume of 400 ml surrounded by a
water jacket. The optimal dimensions of vertical column
were about 0.2 m in diameter and 4 m in column height.
The optimal column height depends on factors such as
wind speed and strength of optically transparent materials
for example, glass or thermoplastics.

(b) Flat panel Photobioreactor: A typical flat-panel PBR
consists of a stainless-steel frame and three polycarbonate
panels [59]. The reactor comprises of two compartments
placed side by side. The front compartment contains the
bacterial culture. Water is circulated via a temperature
controlled water bath through the hind compartment in
order to maintain the desired temperature of the culture.
This design of PBR usually utilizes artificial light, tung-
sten-halogen lamps (usually 500 W) are placed on one
side of the reactor as light source [59]. The average light
intensity provided at the reactor surface is 175 W/m2.
Alternately red light emitting diode (LED peaking at 665
nm) is used as the light source on one side [59]. A mem-
brane gas pump circulates the gas through the spargers
(hypodermic needles) at the bottom of the reactor [59].
The produced gas is collected in a gasbag. In this reactor
system, pressure vessels prevent pressure fluctuations in
the gas recirculation system and a pressure valve main-
tains a constant input pressure to the mass flow controller.
A condenser prevents water vapor from entering the gas
recirculation system. The reactor is autoclaved prior to
cyanobacterial cultivation and hydrogen production. The
culture medium is autoclaved separately and fed to the
reactor. Sampling is done through the sample port,
attached to the outflow tube. Bacterial growth is moni-
tored on-line. On the right-hand side of the reactor a
small tube is attached to the reactor through which bacte-
rial suspension flows due to an airlift effect.

(c) Tubular photobioreactors: Tubular PBRs consists of
long transparent tubes with diameters ranging from 3 to 6
cm, and lengths ranging from 10 to 100 m [60]. The cul-
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ture liquid is pumped through these tubes by means of
mechanical or airlift pumps. The tubes can be positioned
in many different ways: in a horizontal plane as straight
tubes with a small or large number of U-bends; vertical,
coiled as a cylinder or a cone; in a vertical plane, posi-
tioned in a fence-like structure using U-bends or con-
nected by manifolds; horizontal or inclined, parallel tubes
connected by manifolds. The predominant effect of the
specific designs on the light regime is a difference in the
photon flux density incident on the reactor surface [61].
Tredici PBR is special type of tubular PBR with internal gas
exchange and consists of thin flexible tubular plastic
sleeves filled with water and ganged together with top and
bottom distribution pipes [62]. The tubes are positioned
in a corrugated plastic roofing sheet, which keeps them
straight and even. The tubes can be of considerable length,
with an optimal length in between 20 m and 50 m,
depending on factor being optimized. The system is usu-
ally inclined at a slope allowing free rise of gas bubbles
and a footer with compressed air line allows supply of air
at the bottom of the reactor into selected tubes. The
header serves as degasser to allow for containment of the
fluid displaced during aeration. Every third or fourth tube
is not gassed, which serves as a fluid return tube and pro-
vides an efficient airlift type of recirculation. In this PBR,
cooling is achieved by water spray. The mass transfer char-
acteristics of the tubular photobioreactor vary with the
shape of the reactor and type of mixing used [63]. A sum-
mary of bioreactor types and their properties have been
provided in Table 2.

Future prospects for cyanobacterial hydrogen production
Cyanobacterial hydrogen production is poised to be a
very useful commodity provided various effective utiliza-
tion of the produced hydrogen is devised. There are vari-
ous applications where the process of biological hydrogen
production by cyanobacteria can be well utilized. The

examples can be included from food and chemical indus-
tries, which employ the process of hydrogenation to pro-
duce derivatives that are used as food additives,
commodities, and fine chemicals:

(a) Hydrogenation of cheap carbohydrates into high val-
ued derivatives: High value-added C5 and C4 polyols can
be obtained from cheap C6 carbohydrates by oxidative
decarbonylation followed by hydrogenation. These poly-
ols blends are useful for the manufacture of polyesters or
alkyl resins employed in the manufacture of paints. Sorb-
itol is another important polyol produced from hydrogen-
ation of glucose, which is used industrially in a variety of
physical and chemical processes, (for example, as humect-
ants and softener in various food products, drugs and cos-
metics). Derivatives are also used in protecting coatings,
plasticizers, emulsifiers and detergents.

(b) Hydrogenation of fatty acids: Hydrogenation of fatty
acids is used to manufacture margarines, shortenings, and
shortening oils. The hydrogenation of oils converts liquid
oils into hard fats by adding hydrogen to the fat molecule.
Oils can be hydrogenated to varying degrees, depending
on the hardness. These fats are desirable for its melting
point, allowing for high temperature cooking and frying.
Hydrogenation involves the artificial saturation of unsatu-
rated bond(s) present in fatty acids. In the process fatty
acids are put under pressure, using hydrogen gas at tem-
peratures of 120–210°C (248–410°F) in the presence of
a metal catalyst (nickel, platinum, or copper) [67] for six
to eight hours.

All these process requires the rigorous hydrogenation. If
hydrogen produced by cyanobacteria is very economical
in comparison to the traditional large-scale hydrogen pro-
duction. Cyanobacterial hydrogen produced in a photobi-
oreactor can easily be directed to separate compartments

Table 2: Summary of PBR properties

PBR type Cyanobacterial species 
used

Advantage Disadvantage References

Vertical Column Spirulina platensi 1. Simple and cost effective 
design
2. Greater rate of mass 
transfer in bubble columns

1. Lack of control on 
irradiant light.
2. Wide fluctuations in 
productivity.

57, 58, 64

Flat Pannel Spirulina platensi 1. Greater control of 
incident light.
2. Effective control of gas 
pressure.

1. Cost for production is 
high.
2. Complicated design and 
more maintenance

59, 61

Tubular Arthrospira platensis,
Anabaena variabilis PK84,
Anabaena variabilis ATCC 
29413,
Anabaena variabilis PK84

1. Flexibility in volume to 
surface area ratio.
2. Flexibility in shifting the 
place receiving light.
3. Give higher biomass with 
internal static mixture.

1. While provides flexibility 
to irradiant light
but creates pockets of 
poor mass transfer
2. Mixing time is longer in 
internal static mixture 
TPBR

42, 60, 61, 63, 65, 66
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containing the substrate for hydrogenation and specific
catalysts. Provisions of external heating as well as purify-
ing the products from different contaminants (catalyst
and reactants) may be easily provided as well. Hydrogen
generated in near vicinity in PBRs will reduce requirement
for transport and hazards associated with transport. Apart
from hydrogenation, hydrogen is combustible so it can be
well applied as a substitute for conventional fuel or may
be used in fuel cells to generate electricity.

Conclusion
Hydrogen gas is seen, as a future energy carrier by virtue of
the fact that it does not evolve the "greenhouse gas" CO2
in combustion, liberates large amounts of energy per unit
weight in combustion, easily converted to electricity, and
is an inexhaustible resource. Biological hydrogen produc-
tion has several advantages over other conventional
hydrogen production processes. It requires the use of a
simple photobioreactor akin to a transparent closed box,
with low energy requirements and it is very cost effective.
Electrochemical hydrogen production via solar battery-
based water splitting requires the use of solar batteries
with high-energy requirements. Low conversion efficien-
cies of biological systems can be compensated for, by low
energy requirements and reduced initial investment costs.
The most appealing aspect of the biological hydrogen pro-
duction is the source of hydrogen, which is nothing but
water. With the existing knowledge of bioengineering it
possible to obtain sufficient amount of hydrogen that on
combustion will liberate energy and therefore could act as
a substitute of coal in several operations [68]. Reported
analysis suggests that cost of photobiological produced
hydrogen ($25/m3) is much lower compared to that pro-
duced by photovoltaic splitting of water ($170/m3) [69].
Though there are various hindrances with cyanobacterial
hydrogen production and utilization but potential solu-
tions also seem to exist readily. With the global popula-
tion increasing at a fast and steady rate, both the
environment and the earth's natural resources cannot
continue to be exploited without development of alterna-
tive sources of energy. Capability of individual nations to
produce hydrogen will eliminate monopolies on the fuel
industries, and, price increases due to political conditions.
The hydrogen production by cyanobacteria although
offers much promise in this respect, more research is
needed before this commodity can be effectively utilized.
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