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Abstract 

Macroscopic fungi, mainly higher basidiomycetes and some ascomycetes, are considered medicinal mushrooms and 
have long been used in different areas due to their pharmaceutically/nutritionally valuable bioactive compounds. 
However, the low production of these bioactive metabolites considerably limits the utilization of medicinal mush-
rooms both in commerce and clinical trials. As a result, many attempts, ranging from conventional methods to novel 
approaches, have been made to improve their production. The novel strategies include conducting omics investiga-
tions, constructing genome-scale metabolic models, and metabolic engineering. So far, genomics and the combined 
use of different omics studies are the most utilized omics analyses in medicinal mushroom research (both with 31% 
contribution), while metabolomics (with 4% contribution) is the least. This article is the first attempt for reviewing 
omics investigations in medicinal mushrooms with the ultimate aim of bioactive compound overproduction. In this 
regard, the role of these studies and systems biology in elucidating biosynthetic pathways of bioactive compounds 
and their contribution to metabolic engineering will be highlighted. Also, limitations of omics investigations and strat-
egies for overcoming them will be provided in order to facilitate the overproduction of valuable bioactive metabolites 
in these valuable organisms.

Keywords Bioactive compound, Medicinal mushroom, Metabolic engineering, Omics study, Systems biology, 
Transcriptomics

Background
The application of mushrooms for medicinal purposes 
has a very long history [1]. Macroscopic fungi, mainly 
higher Basidiomycetes and some Ascomycetes, are con-
sidered medicinal mushrooms and can prevent, alleviate 
or cure several diseases and balance a healthy diet in the 
form of powders or extracts [2]. Many higher Basidiomy-
cetes contain high/low molecular weight compounds, 

such as polysaccharides [3], lectins [4], triterpenes [5], 
statins, phenolic compounds, and antibiotics, in their 
fruit bodies, cultured mycelia, and cultured broth [6,7]. 
According to previous studies, some medicinal prop-
erties detected in mushrooms are as follows: antioxi-
dant, antiviral, antifungal, antibacterial [4], antiobesity 
[8], cardiovascular protective [9], neuroprotective [10], 
immunomodulating, antitumor [3], hepatoprotective, 
cholesterol-lowering [11], antidiabetic [12], neuroregen-
erative, radical scavenging, and detoxicating activities 
[2,6,13]. For example, G. lucidum, a medicinal mush-
room that possesses therapeutic activities such as anti-
tumor, antioxidant, and immunomodulatory effects, is 
used for postponing aging, improving health, preventing 
and curing illnesses such as hypertension, gastric cancer, 
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hepatitis, bronchitis as well as minor disorders includ-
ing insomnia. In fact, it is possible to manufacture sev-
eral valuable Ganoderma-based products, including soft 
capsules, injections, tablets, and drinks, by utilizing their 
spores and basidiocarps [14]. Thus, medicinal mush-
rooms are important for modern medicine and can be 
used as a new class of drugs known as “Mushroom Phar-
maceuticals” to support a good quality of life and prevent 
illnesses such as immune system diseases [2,15].

From 1990 to 2020, global mushroom production has 
raised 13.8-fold to 42.8 million tons [16]. This global 
industry, which is consisted of edible, medicinal, and wild 
mushrooms, was approximated to be about $63 billion 
in 2013, with China being the leading producer of cul-
tivated, edible mushrooms. 54% of this global industry 
is designated to cultivated, edible mushrooms and was 
around $34.1 billion in 2015 [17,18]. However, as more 
increase in edible mushroom consumption is anticipated 
in upcoming years, annual sales of this component of the 
world mushroom industry will grow from $34 to $60 bil-
lion [19] and their market will reach 24.05 million tons 
by 2028 [20]. Moreover, the remaining components of 
the global industry, namely medicinal mushrooms and 
wild mushrooms, represented 38% ($24 billion) and 8% 
($5 billion) of the total value, respectively [17]. 85% of 
total mushroom production in the world is allocated to 
five fungal genera, i.e., Lentinula (the main genus) hav-
ing about 22%, Pleurotus (mainly P. ostreatus, besides P. 
eryngii, P. djamor, P. pulmonarius, and P. citrinopilea-
tus) with roughly 19% and Auricularia with approxi-
mately 17% of the world’s production. Next are Agaricus 
(mostly A. bisporus and considerably lower A. brasilien-
sis amounts) and Flammulina, the fourth and fifth most 
cultivated mushrooms, with 15% and 11% of the total 
amount, respectively [21]. Some other cultivated mush-
room species are G. lucidum, V. volvacea, H. erinaceus, 
G. frondosa, and T. versicolor, which are desired edible 
and medicinal species in many regions of the globe [1]. 
Based on the most recent estimations, the market size 
of G. lucidum products is worth over US $2.5 billion 
[14,22]. Furthermore, It was estimated that the annual 
production of V.volvacea is 330,000 tons in China [23]. 
Antrodia cinnamomea and Cordyceps militaris are two 
other examples of medicinal mushrooms. According to 
estimations, products derived from A. cinnamomea, such 
as health foods and raw fruiting bodies, have a total mar-
ket value of more than US$ 100 million annually [24], and 
the annual sale of C. militaris was evaluated to be about 
3 billion RMB in China [25]. Although the current reach 
for other medicinal mushrooms may not be extensive at a 
global level, creating awareness about these mushrooms 
and their benefits will eventually increase their market 
potential.

Several examples of medicinal mushrooms (mainly 
those related to our review), their bioactive substances, 
medicinal properties, and applications are summarized 
in Table  1. In addition to the utilization of mushrooms 
as “Mushroom Pharmaceuticals,” they can be used as 
dietary foods, dietary supplement products, additive 
and ingredient replacers (such as meat substitutes) [26], 
cosmeceuticals [2,15], and analgesics [27]. Furthermore, 
as they possess insecticidal, fungicidal, nematocidal, 
antiphytoviral, bactericidal, and herbicidal effects, they 
can be utilized as natural biocontrol agents for plant pro-
tection [2,28]. There is an increasing demand for mush-
rooms due to all of the applications mentioned above as 
well as the nutritional value and pharmaceutical prop-
erties of their bioactive compounds. However, the low 
production of their bioactive compounds can be a bot-
tleneck for clinical trials and commercial applications 
[29]. For example, improvements in the production of 
GA-T (a bioactive substance in G. lucidum) are needed 
to decrease production expenses and fulfill the demands 
in large-scale, commercial, and clinical trial fields [30]. 
Hence, many efforts have been made to increase the 
production yield of bioactive compounds in medicinal 
mushrooms via different methods such as optimizing the 
growth conditions (medium components and cultiva-
tion conditions) [31,32], signal transduction induction by 
inducers [5], and applying heat stress [33].

On the other hand, understanding the biosynthetic 
pathways of bioactive compounds as well as their com-
plex regulation is necessary for achieving improvements 
in their production [29]. Thus, omics investigations can 
be novel, powerful, and beneficial tools in this regard. 
Still, omics approaches have not been adequately 
exploited for this purpose.

Omic tools, which provide a comprehensive view of cell 
metabolites, tissues, and organisms, are used to investi-
gate the identification of genes (genomics), mRNA (tran-
scriptomics), metabolites (metabolomics), and protein 
production (proteomics) under specific environmen-
tal conditions or by a particular approach. By utilizing 
transcriptomic and proteomic methods, it is possible 
to explain the roles of the fruiting body and vegetative 
mycelium during the detection of the genes that control 
the induction or repression of certain metabolic path-
ways. Moreover, metabolomics studies help determine 
the metabolites associated with every cellular process 
and those involved in different culture conditions [34]. 
To our knowledge, the genome, transcriptome, pro-
teome, and metabolome studies on medicinal mush-
rooms for increasing the production of pharmaceutical 
compounds have been rarely reviewed. In fact, up until 
now 80 articles have conducted omics investigations on 
medicinal mushrooms with 48.75% of these studies being 
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influential in bioactive compound overproduction. Thus, 
the present study aims to review for the first time, the 
omics analyses with the emphasis on improving bioac-
tive substance production. The production of bioactive 
compounds will be compared before and after exploit-
ing omics-based overproduction strategies and it will 
be shown that the maximum generated increase can be 
as high as fourfold. Challenges of omics technologies in 
medicinal mushroom research and their possible solu-
tions will also be discussed.

Genomics studies on different medicinal 
mushrooms
Since genome data makes discovering and analyzing the 
biosynthesis of bioactive metabolites easier in higher 
fungi, chances for conducting research and developing 
their metabolic products can be provided by advance-
ments in genome sequencing [129]. Up until now, 
genomic information of some edible/medicinal mush-
rooms including, A. bisporus [130], V. volvacea [23], 
Schizophyllum commune [131], F. velutipes [132], H. eri-
naceus [133], G. lucidum [134], C. militaris [138], Ligno-
sus rhinocerotis [135], Ganoderma sinense [139], and 
Sanghuangporus sanghuang [140] has become available 
and resulted in gaining new insights into various aspects. 
The results of these genomic analyses are summarized in 
Table  2. For instance, genome sequencing of the model 
mushroom S. commune provides deeper knowledge of 
underlying mechanisms of mushroom formation. This 
knowledge can be helpful in their bioactive compounds 
production and their application in industry for achiev-
ing enzymes and pharmaceuticals.

According to Table  2, genomics investigations have 
been an effective tool for studying medicinal mushrooms 
due to their roles in different subjects such as offering a 
genetic foundation of medicinal effects, improving bio-
logical and genetic studies, and elucidating genetic and 
enzymatic mechanisms in addition to biological charac-
teristics related to different processes. Some of these pro-
cesses are adaptation, degradation, sexual reproduction 
and development, sensitivity to different factors, mush-
room formation, ethanol and medicinal compounds pro-
duction, defense, evolutionary origins, and symbiosis. A 
summary of these applications as well as common tech-
niques employed in genomics studies is demonstrated in 
Fig.  1. Also, information regarding the main techniques 
in genomics investigations, their different approaches, 
advantages, and limitations are provided in Table 3. For 
instance, FGENESH is the most rapid hidden Markov 
model-based program for precise ab initio gene structure 
prediction. When single-gene sequences are studied by 
this program, about 93% of all coding exon bases, along 

with 80% of human exons, can be predicted in 1.5 min. 
However, it is not as accurate as homology-based pro-
grams such as Exonerate and DIALIGN [149].

The genomic studies, which are focused on determin-
ing biosynthetic pathways or biosynthetic gene clusters 
(BGCs) of bioactive metabolites and thus, can be con-
sidered more facilitative for increasing the production of 
these compounds, are discussed below in more detail.

Genomics studies for exploring BGCs
Recent progress in genome sequencing indicates that 
many putative BGCs are not visible in fungal genomes 
[157,158]. However, platforms for advanced genome 
mining, which are beneficial for exploring BGCs of natu-
ral bioactive compounds generated from multi-enzyme 
pathways, can be provided by the existing mushroom 
genomes [159].

Clearly, genome mining is able to be employed for 
discovering the biosynthetic genes of formerly acknowl-
edged products as well as new, unfamiliar products by 
different techniques such as whole-genome comparisons 
and genome search approaches [159]. A large number 
of unprecedented fungal metabolic gene clusters deter-
mined through genome mining initially seem to be silent 
(called cryptic or orphan BCGs) and incapable of produc-
ing desirable metabolic products. Still, some approaches 
have become available for the activation of these silent 
gene clusters via the utilization of different stress types 
and co-culturing with bacteria [160] or other fungi 
[161,162]. Subsequently, stimulated gene expression can 
be further investigated via transcriptomics, proteomics 
studies, metabolomics [160,162–170], and co-expression 
correlations [171,172]. In addition to genome mining 
efforts, advancements in bioinformatics software, includ-
ing antiSMASH, PRISM, and SMURF, have made the 
understanding of suppression or activation of microbial 
biosynthetic pathways possible [173].

Chen et  al. determined the H. erinaceus gene clusters 
that participated in bioactive secondary metabolites 
biosynthesis (e.g., terpenoid and polyketides biosynthe-
sis) by conducting genomic analyses including multiple 
sequence alignments, phylogenetic investigations, and 
using software such as antiSMASH [10]. Indeed, the 
prediction of three gene clusters associated with ter-
pene production and one gene cluster relating to pol-
yketides biosynthesis (PKS) in H. erinaceus resulted in 
discovering a novel family of diterpene cyclases in this 
fungus [10,174]. These results can make uncovering and 
production of valuable secondary metabolites of H. eri-
naceus and other medicinal mushrooms easier in the 
future and offer useful data for secondary metabolite 
exploration in other basidiomycetes. F. filiformis, with the 
genome length of 35.01 Mb and 10,396 gene models, was 
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predicted to have thirteen putative terpenoid gene clus-
ters, 12 sesquiterpene synthase genes from four differ-
ent categories, and two type I polyketide synthase gene 
clusters in its genome. In comparison to its cultivar strain 
(81 genes), more terpenoid biosynthesis-associated genes 
were existent in the wild strain (119 genes) [61]. Moreo-
ver, the wild strain of F. filiformis has more terpenoid and 
polyketide synthase gene clusters compared to H. erina-
ceus. In another study, a distinct network of sesquiter-
pene synthases and two metabolic gene clusters, which 
contribute to illudin sesquiterpenoids biosynthesis, were 
demonstrated by the draft genome sequence of Ompha-
lotus olearius. As a holistic survey of all currently avail-
able Basidiomycota genomes became possible through 
characterizing the sesquiterpene synthases, a prognos-
ticative resource for biosynthesizing terpenoid natural 
products was presented in these mushrooms [148]. These 
findings will be a great help in the discovery and biosyn-
thesis of peculiar pharmacologically relevant substances 
from Basidiomycota.

Genomics studies with the aim of elucidating biosynthetic 
pathways
Undoubtedly, studying the genome of medicinal mush-
rooms is effective for promoting research and develop-
ment in pharmacological and industrial fields [129]. For 
instance, 16 cytochrome P450 superfamilies, possibly 
involved in the terpenoid synthesis, were detected by 
sequencing analysis of the G. lucidum genome via whole-
genome shotgun strategy [129,136]. Detection of these 
superfamilies helped in determining the ganoderic acid 
synthetic pathway, massively producing triterpenoids, 
and achieving heterogonous expression through syn-
thetic biotechnology. Moreover, a study on G. lucidum 
by Liu et  al. indicated the genes associated with wood 
degradation and triterpene biosynthesis by compre-
hensive annotation of analyzed genes from the genome 
[137]. Regarding the model medicinal fungus, G.sinense, 
a comprehensive outline of its secondary metabolism and 
defense mechanisms was achieved through the inves-
tigation of DNA methylation patterns, small RNA tran-
scriptomes, and complete genome sequence [139]. Thus, 
sequencing analysis, gene annotation, examining small 
RNA transcriptomes, and patterns of DNA methylation 

Fig. 1 Commonly used techniques in genomics and a summary of the genomics applications in medicinal mushrooms
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might be suitable techniques in concentrating genomic 
studies on secondary metabolite biosynthesis in the Gan-
oderma genus. Small RNA transcriptome analysis has not 
resulted in the overproduction of bioactive metabolites in 
G.lucidum yet. However, it was formerly demonstrated 
that microRNAs (miRNAs) could regulate secondary 
metabolite biosynthesis in many plants [175,176]. Hence, 
conducting small RNA profiling for determining miR-
NAs, studying miRNA-dependent regulation of valuable 
metabolites, and investigating miRNAs targeting genes 
associated with biosynthetic pathways can assist us in 
designing metabolic engineering strategies to improve 
bioactive substance contents in the desired organism.

As mentioned before (Sec “Background” section), 
increasing the production of a medicinal compound 
is not possible without having knowledge of its biosyn-
thetic pathways and regulation. As the genes, pathways, 
and procedures related to the biosynthesis of the bioac-
tive substances and wood decay by S. sanghuang were 
unidentified, Shao et  al. investigated and reported a 
34.5  Mb genome encoding 11,310 predicted genes of S. 
sanghuang. In this study, homologous genes associated 
with the biosynthesis of triterpenoids, polysaccharides, 
and flavonoids were determined. Then, the expression 
of these genes was investigated throughout four phases 
of development (10 and 20  days old mycelia, one-year-
old fruiting bodies, and fruit bodies with three years of 
age). Furthermore, 343 transporters and four proteins 
of the velvet family, which were taking part in modula-
tion, uptake, and redistribution of secondary metabo-
lites, were detected [140]. As a result, genomics analysis 
can enhance our knowledge about secondary metabolites 
and their synthesis, which can be helpful for examining 
the medical applications of bioactive compounds and 
increasing their production in the future.

Not only the biosynthesis of sesquiterpenoids, antro-
camphin, antroquinonol, ergostanes, and triterpenoids 
but also sexual development was clarified by exploiting 
genome ontology enrichment and pathway investigations 
in A. cinnamomea. Moreover, a 32.15-Mb draft genome 
including 9254 genes was achieved for this mushroom 
[97]. Also, the genome of H. erinaceus, which is consisted 
of 9895 genes, is 39.35 Mb and conveys different enzymes 
and a huge family of cytochrome P450 (CYP) proteins 
contributing to terpenoid backbones, sesquiterpenes, 
diterpenoids, and polyketides biosynthesis [10]. As 
another example, the obtained information from genome 
sequencing of C. militaris can significantly improve 
molecular research on the biology, fungal sex, and path-
ogenicity of this mushroom, uncover its mechanisms of 
medicinal compound synthesis, and be effective in the 
commercial production of its fruiting structures. In fact, 
utilizing the medicinal compounds of this mushroom 

can be facilitated by exploiting genome sequence data 
[138]. It is also worth mentioning that throughout the 
subculture and storage, C. militaris can experience a 
high frequency of strain degeneration which restricts 
the large-scale production of its bioactive compounds. 
In this case, genome-wide analysis of DNA methylation 
has shed light on the possible degeneration mechanisms 
of this strain [163] which will be beneficial for facilitat-
ing large-scale metabolite production. Regarding DNA 
methylation analysis, it is possible that the methylome 
repositories of P. tuoliensis and P. eryngii var. eryngii ease 
future investigations of epigenetic regulatory mecha-
nisms supporting gene expression throughout the devel-
opment of mushrooms. Thus, these repositories may 
have the potential to be considered as a guide for select-
ing the most suitable lifecycle/developmental phase for 
overproducing desired metabolites in medicinal mush-
rooms [164].

The genetic basis of the therapeutic activities of L. rhi-
nocerotis, a comparative genomics source for polyporoid 
fungi and a platform for further identification of puta-
tive bioactive proteins and pathway enzymes of second-
ary metabolites is offered by the genome content of this 
mushroom [135]. By obtaining more information regard-
ing biosynthetic pathways via genomic analyses, more 
targets for metabolic and pathway engineering can be 
found, which eventually contribute to rational predic-
tions in the production of desired bioactive compounds.

Hitherto, more insights into the gene clusters or bio-
synthetic pathways of triterpenoids, ganoderic acids, 
polysaccharides, flavonoids, sesquiterpenoids, ergos-
tanes, antroquinonol, antrocamphin, and polyketides 
in medicinal mushrooms have been achieved through 
genomic studies. Indeed, genomic investigations and 
genome sequencing programs are considered remark-
able resource providers for determining new genes which 
contribute to the synthesis of bioactive substances (both 
known and novel substances). Also, more medicinal 
mushroom genomes will continue to become available 
[159]. Thus, progress in genome sequencing and genomic 
studies, genome mining, and bioinformatics, along with 
the availability of more genomes can greatly assist us in 
understanding the metabolic functions of desired organ-
isms, which may result in both novel compound iden-
tification and improving the production of previously 
known valuable substances.

Transcriptomics studies on different medicinal 
mushrooms
The set of all RNA molecules, including mRNA and non-
coding RNAs, which are transcribed in one cell or a pop-
ulation of cells, is defined as the transcriptome. In other 
words, it is the complete transcript set in a specified 
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organism or a particular transcript subset in a specific 
type of cell. Although genomes of a given cell line are 
not changeable, external environmental conditions may 
cause the transcriptome to alter considerably. Because 
transcriptome includes every cellular mRNA transcript, 
it reveals the genes actively expressed at any particular 
moment, excluding mRNA degradation events [129].

In fact, expression profiling, together with advanced 
next-generation sequencing technology referred to as 
RNA sequencing (RNA-Seq) technology [177] and bio-
informatics infrastructure, is among the most promis-
ing procedures for determining responsive genes, their 
modes of regulation, and related transcription factors in 
adaptation to certain abiotic and biotic components dur-
ing a change in metabolism. In other words, in order to 
perform transcriptomic analysis at the level of nucleo-
tides, high-throughput methods on the basis of DNA 
microarray technology or RNA-Seq are often used 
[129]. RNA-Seq allows the easy detection of rare and 
low-abundance transcripts, single-nucleotide polymor-
phisms, rare mutations and previously unknown gene 
isoforms, microbial RNAs, and regulatory micro-RNAs 
while microarray technology makes the parallel quantifi-
cation of thousands of genes from various samples pos-
sible [178,179]. In addition, using Illumina sequencing 
technology has paved the way for de novo transcriptome 
assembly and analyzing gene expression even in species 
with no full genome data [180].

Transcriptomic analysis has been done in higher fungi 
[129], including different medicinal mushrooms such 
as C. militaris [181], G.lucidum [182], V.volvacea [183], 
P. ostreatus [184], Ophiocordyceps sinensis (Cordyceps 
sinensis) [185], H. erinaceus [10], F. filiformis [61], A. 
cinnamomea [97], P. eryngii [186], Termitomyces albumi-
nosus [187], L. edodes [188], and L. rhinocerotis [169]. For 
instance, genome-wide transcriptome analysis was con-
ducted on different developmental stages of artificially 
cultivated C. militaris and uncovered 2712 differentially 
expressed genes between its mycelium and fruiting body 
[181]. Moreover, as the result of performing developmen-
tal transcriptomics on O.sinensis, key pathways and hub 
genes in the development of this mushroom as well as the 
gene profile related to its sexual development was bet-
ter understood, which adds novel data to current mod-
els of fruiting body development in edible fungi [189]. 
Also, Zhu et  al. discovered 8906 potential RNA-editing 
sites in G. lucidum at the genomic level and the genes 
consisting of RNA-editing sites were functionally catego-
rized by the Kyoto encyclopedia of genes and genomes 
(KEGG) enrichment and gene ontology analysis. As a 
result, laccase genes contributing to lignin degradation, 
key enzymes involved in triterpenoid biosynthesis, and 
transcription factors were enriched. Furthermore, the 

influence of transcriptional plasticity on the mushroom 
development and growth as well as on the adjustment of 
secondary metabolic biosynthetic pathways was eluci-
dated [190].

Therefore, transcriptome analyses can provide a bet-
ter understanding of gene expression changes in differ-
ent developmental stages in medicinal mushrooms. Also, 
various processes have been clarified through transcrip-
tomics. For instance, regarding P. ostreatus, genome and 
transcriptome analysis gave insights into the decay pro-
cess in postharvest mushrooms and indicated the appli-
cation of high-throughput techniques for establishing 
models of living organisms exposed to different environ-
mental conditions [184]. In another study, the functional 
genes of the terpenoid biosynthesis pathway and wood 
degradation in G. lucidum were demonstrated by ana-
lyzing transcriptome through Illumina high-throughput 
technology [180]. Hence, the obtained transcriptome 
datasets offer a platform of beneficial public informa-
tion for future functional genomics studies relating to 
medicinal mushrooms [188] and can set the stage for 
choosing the most suitable lifecycle/developmental phase 
for achieving better and increased production of desired 
compounds. On the other hand, RNA-Seq along with 
systems biology tools (such as genome-scale metabolic 
networks) enables the systematic recognition of reporter 
metabolites that represent important regions of the 
metabolic network [191] and hot spots regarding meta-
bolic regulation [192,193]. Thus, these tools can also be 
advantageous for discovering candidate targets for meta-
bolic engineering purposes. Indeed, by adopting systems 
approaches, we can initiate experiments toward strain 
improvement to gain enhanced production of fungal 
metabolites. Also, this enhancement can be achieved via 
different routes ranging from maneuvering on cultivation 
medium to manipulating the cellular metabolic regula-
tion. Some transcriptomic findings related to the biosyn-
thesis of bioactive compounds and the development of 
their production are discussed below.

Transcriptomics studies focused on cordycepin 
biosynthesis
The transcriptome of O. sinensis was investigated by 
Xiang et al. Examining adenosine kinase, 5′-nucleotidase, 
and adenylate kinase, which are possibly associated with 
the phosphorylation and dephosphorylation in the bio-
synthesis of cordycepin, offered valuable data for eluci-
dating the cordycepin biosynthetic pathway. A model for 
cordycepin synthesis was also achieved [185]. This study 
offers a transcriptome dataset that can be considered a 
new resource for discovering genes (such as mating-type 
genes and genes associated with modulating signal trans-
duction and the level of transcription in fruiting body 
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development) besides examining and illuminating impor-
tant biosynthetic and developmental pathways not only 
in O. sinensis but also in other medicinal mushrooms.

Although the metabolic pathways that contribute to 
the production of cordycepin were acknowledged to be 
linked to different carbon sources, the cellular regulatory 
procedures at the systems level were not well described 
[192]. Therefore, transcriptomic and genome-scale 
network-driven analyses were performed in C. milita-
ris strain TBRC6039 cultivated on sucrose, glucose, and 
xylose carbon sources in order to examine the global 
metabolic response to the biosynthesis of cordycepin. 
Identification of 2883 DEGs, which were about 17% 
of the total 16,805 expressed genes, revealed sucrose 
and glucose-mediated alterations in the transcriptional 
regulation of central carbon metabolism (CCM). Also, 
reporter metabolites and main metabolic subnetworks 
including methionine, adenosine, and cordycepin, were 
offered via up-regulating cordycepin biosynthetic genes 
and after exploiting genome-scale metabolic network-
driven analysis. These results present valuable data 
regarding C. militaris for systems-wide cordycepin 
overproduction [192] and indicate that the applied tech-
niques, transcriptomics combined with genome-scale 
network-driven investigations, should also be extended 
to other higher fungi and other bioactive compounds 
in order to facilitate overproduction. Since C. militaris 
genome and RNA-sequencing data are available, inte-
grating data for the investigation of cellular metabolism 
underlying cordycepin production has become possible 
[194]. Thus, the responsive mechanism of xylose con-
sumption in C. militaris strain TBRC7358, the precur-
sor and energy resources for cell growth and cordycepin 
production, and a remarkable role of putative alternative 
pathways for providing cordycepin production precur-
sors on xylose were indicated by DEGs and the reporter 
metabolites analysis [195]. Enhancement of the cultiva-
tion procedure for increasing cordycepin and biomass 
productivities can be done with the help of the insight 
gained from this study which sheds light on the molecu-
lar mechanism underlying main metabolic pathways in 
transferring xylose towards cordycepin biosynthesis in 
C. militaris TBRC7358 [195]. These outcomes indicate 
that employing transcriptomic studies can clarify both 
main and alternative metabolic pathways related to the 
production of medicinal substances. Moreover, based on 
previous studies, genes related to cordycepin biosynthe-
sis were up-regulated by growing C. militaris in favora-
ble carbon sources. So, cultivating C. militaris strains for 
growth and cordycepin production relied on favored car-
bon sources proposing the essentiality of systems design 
of cultivation medium [196,197].

Another transcriptome analysis was performed on a 
C. militaris with a two-fold enhancement of cordycepin 
production caused by adding l-alanine to gain a deeper 
insight into molecular procedures of l-alanine’s effect 
on cordycepin biosynthesis. This investigation resulted 
in the achievement of a metabolic network map from 
the substrate amino acid to the product cordycepin 
and it was demonstrated that the Zn2Cys6-type tran-
scription factors contributed to the development of 
C. militaris fruiting [13] as well as the regulation of 
its secondary metabolites [198]. This study indicates 
the plasticity of the cordycepin network, identifies the 
genes of rate-limiting enzymes in energy production 
pathways and amino acid conversion, and provides a 
suitable basis for future improvement of strain breed-
ing and cordycepin yield. Also, these methods can be 
used for determining the influence of other inducers 
on metabolite biosynthesis from the molecular point of 
view.

So far, different tools such as genome-scale metabolic 
models (GSMMs) and genome-scale network-driven 
analyses, computer-assisted tools, reporter metabo-
lites analysis, and information gained from other omics 
investigations have proved to be prominent for transcrip-
tomics studies in cordycepin-producing mushrooms. 
Combining these tools and integrating their resultant 
data may generate new strategies for overproducing 
cordycepin.

Transcriptomics studies focused on the biosynthesis 
of other valuable bioactive compounds
In order to elucidate the biosynthetic pathway of  carot-
enoids and its related genes, the transcriptomes of C. 
militaris mycelia grown under dark (CM10_D) and light 
exposure (CM10_L) conditions were sequenced and 
compared with each other. Furthermore, according to 
the KEGG pathway enrichment analysis of DEGs, most 
DEGs were elevated in “metabolic routes,” “MAPK sign-
aling pathway-yeast,” and “secondary metabolite biosyn-
thesis.” Also, the significant effect of the Cmtns gene in 
the biosynthesis of carotenoids was demonstrated in 
this mushroom [199]. Moreover, Yang et  al. performed 
de novo sequencing and transcriptome investigation in 
the termite mushroom T. albuminosus, and their work 
resulted in the identification of enzymes related to sapo-
nin biosynthesis, including 22 glycosyltransferase and 
six cytochrome P450s genes [187]. As another example, 
the first transcriptome re-sequencing examination of L. 
rhinocerotis was performed by Yap et  al., which uncov-
ered the expression of several secondary metabolite 
biosynthetic routes (especially biosynthesis of terpene) 
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along with putative genes associated with the biosyn-
thesis of sclerotium glucans. Genes that encoded the 
sugar-binding lectins, cysteine-rich cerato-platanins, and 
hydrophobins were some of the genes with the highest 
expression in the sclerotium [169].

Role of comparative transcriptomics in medicinal 
compound overproduction
Profiling differences in gene expression covering differ-
ent tissues of H. erinaceus (the monokaryotic mycelium 
(MK), dikaryotic mycelium (DK), and fruiting body) 
demonstrated the up-regulation of terpenoid biosynthe-
sis-related genes in mycelia while the gene contributing 
to polyketides biosynthesis, experienced up-regulation 
in the fruiting body [10]. A similar study in F. filiformis 
revealed that contrary to H. erinaceus, a good num-
ber of terpenoid biosynthesis genes were up-regulated 
in the primordium and fruiting body of the wild strain, 
whereas polyketide synthase genes showed up-regulation 
in its mycelium. Relatively high transcript levels of UDP-
glucose pyrophosphorylase and UDP-glucose dehydro-
genase encoding genes, which are associated with the 
biosynthesis of polysaccharides, were observed in the 
mycelia as well as fruiting bodies [61]. In another study, 
DEGs between mycelia and fruiting bodies as well as 
242 proteins in the mevalonate pathway, terpenoid path-
ways, polyketide synthases, and cytochrome P450s which 
may be related to the biosynthesis of secondary metabo-
lites with therapeutic properties, were identified in A. 
cinnamomea. Expression enrichment was observed in 
genes of secondary metabolite routes for tissue-specific 
substances, such as 14-α-demethylase (CYP51F1) in the 
fruiting body for transforming lanostane to ergostane 
triterpenoids, coenzymes Q (COQ) for biosynthesiz-
ing antroquinonol in mycelium, and polyketide synthase 
for antrocamphin production in the fruiting body [97]. 
Tang et  al. exploited RNA-seq technology for analyzing 
the poly (A) + transcriptome. They generated profiles for 
comparing the expression of Brown film (BF) and non-
Brown film mycelia in order to elucidate the molecu-
lar mechanisms in L. edodes during light-induced BF 
formation. Through de novo assembly, a total of 31,511 
contigs was achieved. Moreover, comparative analysis of 
the expression profiles demonstrated that prospective 
genes contributing to light-induced BF generation play 
important parts in fungal photoreception, the produc-
tion of secondary metabolites, and signal transduction 
[188]. Henceforth, these findings can offer useful infor-
mation for molecular breeding, selecting the best tissues/
developmental stages with higher potential for produc-
ing elevated levels of the desired medicinal compounds, 
enhancing compound biosynthesis, and improvements 
in novel compound production through heterologous 

pathways and metabolic engineering. In addition, they 
will be advantageous for providing more insights into 
the mechanisms of gene expression and gene regulation 
besides further functional and pathway analysis.

In addition to determining DEGs among differ-
ent tissues and developmental stages in an individual 
organism, comparative transcriptomics can be used 
for elucidating processes and gene expression differ-
ences among different culture conditions. For instance, 
G. lucidum goes through differentiation and morpho-
logical alterations in liquid static culture. This process, 
which results in the formation of aerial mycelia and 
asexual spores with substantial amounts of ganoderic 
acids, should be studied in order to allow large-scale 
production of asexual spores and ganoderic acids. Thus, 
comparative transcriptome analysis via suppression 
subtractive hybridization (SSH) method incorporated 
with cDNA array dot blotting was performed for iden-
tification of DEGs in liquid static culture contrasted 
with shaking culture of G. lucidum. Subsequently, 147 
unigenes (such as unigenes regarding asexual sporula-
tion and signal transduction) were detected in liquid 
static culture. Among these 147 unique sequences, pro-
tein database matches were identified for 101 (68.7%) 
expressed sequence tags (ESTs), 88 (59.8% of total) 
ESTs had considerable similarity to acknowledged pro-
teins, and 13 (8.9% of total) sequences were compara-
ble to hypothetical proteins. However, as there were 
slight resemblances to the recognized sequences for 
the remaining 46 ESTs (31.3%), they may demonstrate 
novel genes [200].

Based on the reviewed transcriptomics studies, it is 
exemplified that transcriptomic analyses are powerful 
tools that can be employed for several purposes, includ-
ing enhancement of understanding about the functions 
and evolution of fungal genomes and the clarification of 
the molecular mechanisms of various cellular processes 
(e.g., mechanisms of gene expression and gene regula-
tion). Furthermore, detection of reporter metabolites, 
investigation of the transcriptional response of desired 
organisms in the presence of different factors, and the 
determination of responsive genes, their modes of regu-
lation, and related transcription factors can be facilitated 
by exploiting transcriptomic techniques.

Other applications of these techniques include the 
discovery of the differences in gene expression between 
various developmental stages and different culture con-
ditions, understanding the changes during the devel-
opment, and determination of the functional genes, 
enzymes, and biosynthetic pathways associated with 
bioactive compounds production. Thus, data obtained 
from transcriptome studies will be beneficial for inves-
tigating functional genomics in medicinal mushrooms, 
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molecular breeding, bioactive compounds overproduc-
tion, and improving the synthesis of novel substances via 
heterologous pathways and metabolic engineering. Com-
mon techniques used in transcriptomics studies and a 
summary of the applications of transcriptome analyses in 
medicinal mushrooms are provided in Fig. 2.

Proteomics studies on different medicinal 
mushrooms
Methodical discovery and quantification of the complete 
protein set in a biologic system, namely cell, tissue, or 
organism, performed at a particular moment, are defined 
as proteomics analysis [129]. Proteome investigations can 
bring about a myriad of advantages. For instance, these 
studies are believed to be a suitable strategy for investi-
gating mushroom developmental processes and under-
standing the roles of enzymes and proteins in prospective 
cultivation procedures, particularly in mushrooms with 
challenging cultivation conditions [201]. In addition 
to being helpful in better understanding the cellular 
metabolism [129], proteomics supports the identifica-
tion of the reservoir of minerals and vitamins as well as 
protein effectors in mushrooms which possibly possess 
antibiotic, antitumor, antioxidant, antidiabetic, apoptosis, 
and blood pressure management effects [201]. Also, it is 
an effective tool for determining quantitative alterations 
in protein expression of filamentous fungi in reaction to 
stress exposure [202]. However, identifying all protein 
spots is not possible via proteomic analysis [129]. Thus, 
they should be exploited along with other omics stud-
ies. Proteomics techniques, including 2-dimensional gel 
electrophoresis (2-DE) or liquid chromatography coupled 
with mass spectrometry (LC − MS) (known as standard 
proteomic approaches) [203], 2DE gel-based proteomics 
[201], difference gel electrophoresis (DIGE) technology 
[204], LC-based techniques particularly high-throughput 
shotgun proteomics [205], gel-free proteomics [206], and 
iTRAQ labeling technique incorporated with two-dimen-
sional liquid chromatography-tandem mass spectrom-
etry (2D LC − MS/MS) [202], have turned into essential 
complements to genome and transcriptome techniques 
in fungal biology [207]. Moreover, 2DE gel-based pro-
teomics is considered the most effective and commonly 
used technique for investigating fundamental physi-
ological subjects in fungi, especially in edible mushrooms 
[201].

Proteomic analysis has been performed in different 
mushrooms such as L. rhinocerotis [208], T. heimii [209], 
A. bisporus [210], Pleurotus tuber-regium [211], A. cin-
namomea [212], G. lucidum [170], P. ostreatus [213], and 
F. velutipes [214]. For instance, proteomic investigation 
of antihypertensive proteins was conducted in some edi-
ble mushrooms such as A. bisporus [210]. From another 

perspective, by examining protein expression profiles in 
different growth and developmental stages, a basis for the 
evaluation and comparison of these stages is offered in 
higher fungi. For example, information about biological 
processes contributing to the development of T. heimii 
was provided by exploiting the proteomic method of 
2D-DIGE for the identification and investigation of the 
protein profiles of each developmental stage [209]. More-
over, protein fractions of three developmental stages in 
G.lucidum were analyzed by LC–MS/MS, and expres-
sion of a possibly novel highly immunomodulatory pro-
tein was indicated [170]. These comparative studies have 
also been conducted on P. tuber-regium [211] and A. cin-
namomea [212].

Hence, both developmental stage assessment and novel 
mushroom compound identification can be achieved 
using proteomic techniques. Furthermore, analyzing 
changes in protein expression between two different 
mushroom species can be viewed as another application 
of proteomics that results in uncovering unique proper-
ties of individual organisms and eventually will be helpful 
in the detection of key compounds in their metabolisms. 
However, proteomic analysis is still in the early and 
developmental stages in higher fungi and edible mush-
rooms in comparison to bacterial, plant, and human pro-
teomics investigations as a result of experiment costs and 
whether complete genome sequences of the mushrooms 
are available or not [129,201]. Nevertheless, proteomic 
studies have been executed on these organisms, including 
Pleurotus species, G. lucidum, and F. velutipes, aiming to 
improve bioactive metabolite production. These studies 
will be described below.

Proteomics studies in Pleurotus species
Apparently, the Pleurotus species is considered the most 
investigated genus of edible mushrooms in the proteomic 
subject area since it is among the most extensively cul-
tured edible mushrooms [201]. Mycelial growth is lim-
ited in the presence of lignin in agro-industrial residues 
because of the intricate structure of the substrate and 
complications in using polysaccharides. Thus, investi-
gating lignocellulose-fungi interactions is prominent for 
becoming aware of the ecology of fungi and optimizing 
the bioconversion of agro-industrial substrates to bio-
technologically important products [34]. Attempts have 
been made in order to examine the procedure of the lig-
nocellulose-fungi interactions via proteomic studies. For 
instance, the proteomic profile of P. ostreatus cultivated 
with different lignocellulose substrates as well as differen-
tially expressed intracellular proteins in these substrates 
were reported by Xiao et  al., which helped in studying 
the metabolic pathways associated with lignocellulose 
response in P. ostreatus. Also, 115 proteins were detected 
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and it was demonstrated that enzymes contributing to 
sugar transformation via different metabolic routes expe-
rienced enhancement, and better growth was observed in 
the presence of xylan and carboxymethylcellulose [213]. 
In addition to P. ostreatus, these findings can also be use-
ful for other white-rot fungi.

It was previously observed that applying Tween 80 to 
a submerged fermentation procedure can improve myce-
lial growth and the production of exopolysaccharides in 
P. tuber-regium by 51 and 42%, respectively [215]. Thus, 
a proteomic analysis was performed on this mushroom 
in order to identify the influence of stimulating agents 
(Tween 80) on mycelial growth and the production of 
exopolysaccharides in liquid culture. According to the 
results, a positive regulation on heat shock proteins 
(assist in maintaining cell viability under stressful circum-
stances) as well as on two isoforms of ATP-citrate lyase 
(can impede the Tricarboxylic acid (TCA) cycle activity 
and thereby increase exopolysaccharide biosynthesis) 
was detected. In fact, 32 proteins, which were expressed 
differentially, were determined by one-dimensional gel 
electrophoresis, and ATP: citrate lyase isoform 2 was able 
to increase exopolysaccharide production [216]. In addi-
tion to filling the information gap in the underdeveloped 
field of mushroom proteomics, these findings can explain 
how stimulatory agents, such as Tween 80, can improve 
the biosynthesis of beneficial compounds.

Proteomics studies in G. lucidum
Under nitrogen-limiting fermentation conditions, meta-
bolic rearrangements take place due to the induction of 
growth inhibition via autophagy and imbalances between 
carbon (C) and N. These rearrangements adjust the divi-
sion of cells, morphology, and lipids and starch cumula-
tion processes in order to keep cellular structures safe 
and raise the survival probability. Since nitrogen (N) 
limitation is a suitable method for increasing ganoderic 
triterpenoid (GT) accumulation in G. lucidum, Lian et al. 
analyzed the dynamic adjustment of metabolism reallo-
cation towards GT production in response to N limita-
tion through exploiting iTRAQ-based proteome. Also, 
they attempted to identify the fundamental molecular 
mechanisms of the positive effect of N-limiting condi-
tions on achieving high GT concentrations. As a result 
of applying N-limiting conditions, several changes were 
observed; (1) cell division ceased possibly due to the 
occurrence of autophagy, and cells modified their physi-
ological and metabolic activities to compensate for the 
nutrient limitation; (2) N limitation did not affect cell 
growth tremendously but caused a considerable increase 
in GT amounts in the first 20  days. From the 10th day, 
extended duration of N limitation halted protein con-
tents; (3) biosynthesis of nitrogen-containing substances 
experienced a decrease; (4) the generation of acetyl-CoA 
was promoted via metabolic reprogramming of CCM, 
which may supply GT biosynthesis; (5) in addition to up-
regulation of enzymes involved in protein degradation, 
protein regulation in response to the abiotic stress and 

Fig. 2 Commonly used techniques in transcriptomics and a summary of the transcriptomic applications in medicinal mushrooms
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oxidation–reduction procedures carried out an impor-
tant role in retaining cellular homeostasis; (6) while 
ongoing N limitation raised the mycelial contents of GT, 
it lowered biomass production of G. lucidum.

The obtained results show that the flux of carbon to GT 
in N deficient conditions resulted from the intermedi-
ary metabolism remodeling in the TCA cycle and glyco-
lysis reactions. G. lucidum may utilize mechanisms such 
as glycolysis reinforcement and diminishment of other 
pathways in CCM to increase carbon flux solely toward 
secondary metabolites. Proteomics-based analyses, 
which helped in constructing a network of metabolism 
reallocation toward GT, demonstrated that glycolysis and 
the TCA cycle produce the carbon skeletons consolidated 
into GT precursors. Also, a basis for genetic engineering 
is offered by this study, which can allow the simultaneous 
synthesis of biomass and GT in G. lucidum [217]. These 
results may pave the way for establishing networks of 
metabolism reassignment toward bioactive compounds 
in other medicinal mushrooms, as well.

Proteomics studies in F. velutipes
Liu et  al. applied iTRAQ labeling combined with the 
2D LC − MS/MS method for determining the overall 
chronological alterations in patterns of protein expres-
sion and the mechanism of regulation of F. velutipes 
mycelia in reaction to light and cold stresses. Among 
the 1046 nonredundant identified proteins, 264 distinc-
tively expressed proteins were related to 176 certain 
KEGG pathways. Based on comprehensive data analy-
sis, the regulatory network underlying the mycelial light 
and cold reaction processes of F. velutipes was compli-
cated and multi-dimensional. The reason behind this 
complexity was that it included different activities like 
quick energy supply, production of different compounds 
(lysine, γ-aminobutyric acid, phenylalanine, tyrosine), 
and calcium signal transduction procedure. Moreover, 
generating dynein-dependent actin and microtubule 
cytoskeleton, self-digestion, morphogenesis of organs 
and tissues, pigment secretion, acclimatization to oxi-
dative stress, and other processes related to stress con-
tribute to this complication [214]. In addition to being 
helpful for scientifically improving some mushroom 
cultivation techniques, this information may lead to a 
deeper understanding of the stress response mechanisms 
in macro-fungi.

According to the studies mentioned above, proteom-
ics investigations can be utilized for different aims such 
as analyzing the developmental processes of mushrooms 
and their associated candidate genes and signaling path-
ways, examining fundamental physiological subjects, 
and establishing networks of metabolism reassignment 
toward bioactive metabolites. Other implementations of 

proteomic analyses are depicted in Fig. 3. Also, detecting 
quantitative changes in protein expression of filamentous 
fungi in response to stress or different factors, explain-
ing the mechanism underlying these responses and their 
associated metabolic pathways is possible by employ-
ing these investigations. Thus, proteomics has become 
a necessary complement to genome and transcriptome 
techniques.

Combining transcriptomics and proteomics
Gene and protein expression profiling of medicinal 
mushrooms have helped in gaining knowledge about the 
genes and proteins involved in exogenous nutrient bag 
decomposition in Morchella importuna [218], tempera-
ture stress in L. edodes [219], bioactive metabolites in H. 
erinaceus [220],  Cd2+ stress in P. eryngii [186], generation 
of special odor in S. commune [221], and development of 
the fruiting body in F. velutipes [222] and D. indusiata 
[223]. For instance, the study on P. eryngii indicated the 
coincidence of secondary metabolite production inhi-
bition with the increase in carbohydrate metabolism 
and the rate of energy [186]. Transcriptomic and prot-
eomic studies were also performed on a dikaryotic strain 
(DK13 × 3) that were emerged from two monokaryotic 
P. ostreatus strains (MK13 and MK3). This study offered 
evidence that growing a dikaryon organism is more 
advantageous than a monokaryon because the genes 
contributing to the utilization of macromolecules, cel-
lular material synthesis, ability to withstand stress, and 
signal transduction had more regulation in the dikaryotic 
strain compared to MK13 and MK3 strains [224]. Thus, 
it will be possible to improve the characteristics of the 
strains and make them more resistant to the environ-
ment by selecting monokaryon organisms and doing the 
crosslink. As a result, the desired improvements will be 
observable in the formation of the dikaryon. The tran-
scriptomic examinations and transcriptomics combined 
with proteomic studies on medicinal mushrooms are 
summarized in Table 4.

On the other hand, transcriptomics and proteomics 
investigations can pave the way for more developmental 
and medicinal research in mushrooms. For instance, a 
better understanding of changes during the morphologi-
cal development of D. indusiata was achieved through de 
novo transcriptome assembly and shotgun proteomics of 
its fruiting bodies which resulted in the detection of 4380 
proteins. Moreover, annotation and functional analysis 
of the determined proteins depicted their considerable 
increase in different activities such as small molecule 
synthetic and metabolic procedures [223].

High-throughput sequencing analysis was used to 
achieve transcriptomic and proteomic data with respect 
to mycelia and fruiting bodies of Agrocybe aegerita. The 
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results of this work, which were helpful in illuminat-
ing the polysaccharide and sterol biosynthetic pathways, 
denoted that the polysaccharide was produced in great 
amounts in the fruiting bodies [129]. This data can be 
applied for constructing mushroom cell factories in the 
future. As another example, even though the genome 
sequence of T. guangdongense was available, there was 
not enough information regarding the regulatory net-
works of its metabolite production routes and sporocarp 
development. Thus, Wang et  al. analyzed the transcrip-
tome and proteome at distinctive developmental phases 
of T. guangdongense and found 9076 expressed genes as 
well as 2040 proteins. Also, hub genes were identified by 
exploiting weighted gene co-expression network analy-
sis (WGCNA). As there was a small correlation between 
the transcriptomics and proteomics information, post-
transcriptional procedures seem important in the devel-
opment and growth of this mushroom [104]. Also, the 
down-regulation of terpenoid, polysaccharide, ergosterol, 
and adenosine production-related proteins was demon-
strated during its development.

With respect to G.lucidum, combining De novo tran-
scriptome assembly and proteomic studies under copper 
stress conditions pointed out genes related to terpenoid 
production routes and the breakdown of lignocellulose. 
As a result, it was shown that inducible lignin oxidative 

enzymes and proteins associated with secondary meta-
bolic routes are highly abundant. Furthermore, through 
increasing  Cu2+ concentrations, lignocellulase secretion 
in addition to antioxidants production was enhanced and 
about a fourfold increase was observed in phenolics pro-
duction [226].

Omics technologies have been effectively utilized for 
investigating molecular mechanisms in Cordyceps fungi. 
Transcriptomic and proteomic analyses in artificially 
cultivated C. militaris have demonstrated the variations 
in gene expression between its mycelia and sporocarps. 
2113 genes showed up-regulation in mycelia while 599 
up-regulated genes were identified in sporocarps. There-
fore, as it was inferred that the cordycepin metabolism 
pathway may have a higher activity in the mycelium of C. 
militaris, it is favorable to use the mycelium of this mush-
room for the large-scale production of cordycepin [181].

Moreover, the efficiency of cordycepin can be 
decreased as the result of in vivo conversion to 3′-deox-
yinosine by adenosine deaminase. Since pentostatin is 
able to impede adenosine deaminase, blending pentosta-
tin with cordycepin can improve this efficiency. Thus, by 
exploiting transcriptomic and proteomic analyses, Zhao 
et al. investigated and reported a single gene cluster (con-
sisting of four genes) associated with the production of 
cordycepin and pentostatin in Cordyceps kyushuensis. 

Fig. 3 Commonly used techniques in proteomics and a summary of the proteomics applications in medicinal mushrooms



Page 18 of 34Arshadi et al. Microbial Cell Factories           (2023) 22:11 

This cluster is able to be used for enhancing cordycepin 
yield and identifying more functional proteins [225]. As 
these results may also be observable in other Cordyceps 
fungi, conducting similar investigations on this genus is 
worth considering for increasing cordycepin production.

Thus, in addition to being an asset to better under-
standing mushroom development and obtaining strains 
with improved properties or more resistance to the envi-
ronment, novel aspects and more data in other areas 
can be revealed by applying combined omics investiga-
tions on macro-fungi, compared to single omics studies. 
Some of these areas are biosynthetic pathways of bioac-
tive metabolites, changes in the level of amino acids and 
other nutrients/metabolites, roles of regulatory factors, 
regulation of expression and cellular processes along 
with their molecular mechanisms, and the importance of 
post-transcriptional processes. Therefore, these investi-
gations can eventually be used for increasing the yield of 
bioactive substances.

Metabolomics studies on different medicinal 
mushrooms
Since metabolome is dynamic and can be changed every 
second (similar to transcriptome and proteome), meta-
bolic profiles are able to provide instant photos of the 
cell’s physiological conditions [129]. Indeed, metabo-
lomics is a high-throughput and novel approach [227] 
that can be applied to higher fungi in order to analyze, 
both qualitatively and quantitatively, their metabolome 
existent during a specific period or following induction 
in a specific condition. Moreover, this approach helps 
in understanding biological processes [227], determin-
ing variation in extrinsic and intrinsic environment 
perturbation response as well as various phenotypes by 
exploiting nuclear magnetic resonance (NMR) or com-
bining mass spectrometry (MS) with other chemical 
analysis systems such as gas chromatography (GC/MS), 
HPLC (HPLC–MS), and capillary electrophoresis [228]. 
Metabolomics studies have been executed on Cordyceps 
bassiana, Phanerochaete chrysosporium, T.versicolor, 
Dichomitus squalens, P.ostreatus, and D.indusiata. 
Moreover, metabolite profiles have been exploited for 
chemotaxonomy [229] and for investigating different 
developmental phases or growth conditions in higher 
fungi. For instance, metabolic profiles of mycelia and 
fruiting bodies of C. bassiana were achieved via multi-
variate data analysis and H-1 NMR spectroscopy [230]. 
Also, measuring dynamic multi-parametric metabolic 
reactions of biological systems to genetic alterations or 
pathophysiological stimulants in a quantitative way is 
known as metabonomics. In fact, metabonomics is con-
sidered a subset of metabolomics [231] and is described 
as scientifically analyzing chemical processes including 

metabolites [129]. However, in order to arrive at more 
comprehensive conclusions, metabolomics study is regu-
larly combined with other omics technologies such as 
proteomics and transcriptomics investigations [129]. For 
instance, metabolomic studies and proteomic investiga-
tions of the benzoic acid metabolism were carried out in 
P. chrysosporium [232].

Ergosterol, along with some of its biosynthetic inter-
mediates, is valuable from an economic point of view, 
and the products of nearly every stage of ergosterol 
production are considered drug precursors [233,234]. 
Wang et  al. investigated the differences in genes and 
metabolites in the ergosterol production route through-
out the sporocarp development in F. velutipes by ana-
lyzing the transcriptome and metabolome of samples 
from three developmental phases. In fact, nine cDNA 
libraries were obtained from mycelia, young fruiting 
bodies, and mature fruiting bodies and sequenced via 
Illumina  HiSeq™ 4000 platform. A total of 13 DEGs (six 
up-regulated and seven down-regulated) were identi-
fied throughout the development from mycelium to 
young sporocarps (T1), whereas solely one DEG (one 
down-regulated) was detected throughout the devel-
opment from young sporocarps to mature ones (T2). 
Exploiting nontargeted metabolomics techniques 
resulted in the identification of a total of seven metab-
olites (three increased and four reduced) changed in 
content in the course of T1, and four metabolites were 
detected to be different in the period of T2. A com-
bined investigation of the genome-wide connection 
network demonstrated that the metabolites, which 
were more probable to be adjusted, were chiefly in the 
post-squalene pathway part of the ergosterol biosyn-
thetic pathway [235]. These results helped in gaining a 
deeper knowledge of the metabolic route of ergosterol 
production in F. velutipes. Therefore, combining metab-
olomics data with other omics datasets creates a pow-
erful platform for answering many research questions. 
In addition to common methods and tools in metabo-
lomics research, a summary of the applications of 
metabolomics investigations in medicinal mushrooms 
is provided in Fig. 4.

Overproduction strategies based on omics data
Utilizing omics data for the design and employment of 
overproduction strategies have raised the production 
of some important bioactive compounds in medicinal 
mushrooms. Results of these investigations are indi-
cated in Table  5. For instance, it was anticipated that 
Zn2Cys6 transcript factors (mainly CCM_02568 and 
CCM_01481 genes) might play an important part in 
improving cordycepin production. Thus, these genes 
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Table 4 Summary of transcriptomics studies/transcriptomics combined with proteomics studies on medicinal mushrooms

Mushroom Omics study The investigated processes/
fields

Results/ Proposed applications References

C. militaris Genome-wide transcriptome and 
proteome investigation

Variations in gene expression 
between the mycelia and fruiting 
bodies

Gene expression comparison in 
different developmental stages

[181]

C. militaris Transcriptomics •L-alanine’s effect on cordycepin 
biosynthesis at a molecular level
•Genes of rate-limiting enzymes in 
energy production pathways and 
amino acid conversion
•Cordycepin network

Uncovering mechanisms, their 
associated genes, and transcription 
factors
Achieving metabolic network 
maps from the substrate to the 
desired product
Increasing the yields of bioactive 
metabolites and improving strain 
breeding

[198]

C. militaris Transcriptomics •Carotenoids production
•Biosynthetic pathway of carot-
enoids and its related genes

Improving the production of 
bioactive metabolites
Elucidating biosynthetic pathways 
of bioactive metabolites and their 
associated genes

[199]

Cordyceps kyushuensis Transcriptomics and proteomics Gene clusters associated with the 
production of cordycepin and 
pentostatin

Identification of gene clusters and 
functional proteins associated 
with the production of bioactive 
metabolites
Improving the yield of bioactive 
metabolites

[225]

G. lucidum Comparative transcriptome 
analysis

•Comparing DEGs in liquid static 
culture and shaking culture
•Synthesis of ganoderic acids and 
asexual spores

Providing beneficial data for 
large-scale synthesis of bioactive 
compounds

[200]

G. lucidum Transcriptomics •Mushroom development and 
growth
•Adjustment of secondary meta-
bolic biosynthetic pathways

Elucidating the effect of transcrip-
tional plasticity

[190]

G. lucidum Transcriptomics Functional genes of the wood deg-
radation and terpenoid pathway

Providing a basis for conducting 
functional genomics research

[180]

G. lucidum Transcriptomics Mitochondrial DNA Offering more information about 
the functions and evolution of 
fungal mitochondrial DNA

[182]

Copper-induced ligno-
cellulolytic G.lucidum 
MDU-7

Transcriptomics and proteomics Lignocellulose breakdown and 
terpenoid biosynthetic routes

Uncovering genes related to differ-
ent pathways

[226]

V. volvacea Transcriptomics Stipe development and switching 
from egg to elongation stage

Providing a better understanding 
of the changes during different 
developmental stages

[183]

P. eryngii Transcriptomics •Transcriptional response to con-
siderable levels of heavy metals
•Mechanism of NO in increasing 
heavy metal tolerance
•Coincidence of secondary 
metabolite production inhibition 
with the increase in carbohydrate 
metabolism and the rate of energy

Offering data regarding tran-
scriptional responses to different 
environmental conditions
Uncovering mechanisms

[186]

P. eryngii Transcriptomics and proteomics Cd2+ stress Providing insights into the genes 
and proteins related to different 
stressful conditions

[186]

O.sinensis Developmental transcriptomics Hub genes and main routes in the 
development process

Providing insights into the gene 
profiles related to sexual develop-
ment

[189]

O.sinensis Transcriptomics Modulating signal transduction 
and the level of transcription in 
fruiting body development
Cordycepin biosynthetic pathway

Providing models for the synthesis 
of bioactive metabolites
Uncovering genes and investigat-
ing important biosynthetic and 
developmental pathways

[185]
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were overexpressed in C. militaris CM10. The overex-
pressed strains (CM10Tf1/CM10Tf2) were subjected 
to shake-flask fermentation with L-alanine being added 
after 5  days and results showed that the highest yield 
of cordycepin in the fermentation medium (99  mg/L) 
was about threefold higher compared to the wild type. 
Moreover, the highest yield of cordycepin in the myce-
lium of the overexpressed strains was 97  ng/g, which is 
again 3 times higher than the wild type mycelium [198]. 
Still, there are reports of higher cordycepin production 

yields even as high as 8.57 g/L by using non-omics-based 
strategies [240]. Thus, more attempts should be made 
for optimizing and boosting omics-based overproduc-
tion strategies and approaches. This has happened in 
the study of Ma et  al. Based on a constructed GSMM 
and omics data of G.lucidum, they had previously found 
that the yield of extracellular polysaccharides can be 
enhanced by the addition of l-phenylalanine to the fer-
mentation medium of this mushroom. Optimizing the 
concentration of l-phenylalanine for the production 

Table 4 (continued)

Mushroom Omics study The investigated processes/
fields

Results/ Proposed applications References

H. erinaceus Transcriptomics Terpenoid biosynthesis in mycelia
Polyketides biosynthesis in the 
fruiting body

Providing insights into the expres-
sion and regulation of biosynthetic 
genes in different developmental 
phases

[10]

H. erinaceus Transcriptomics and proteomics Regulation of bioactive metabo-
lites

Offering information about the 
genes and proteins involved in the 
regulation of bioactive metabolites

[220]

A. cinnamomea Transcriptomics Production of secondary metabo-
lites with medicinal properties

Identification of DEGs between 
fruiting bodies and mycelia
Providing beneficial data for 
enhancing the production of valu-
able metabolites

[97]

T. albuminosus Transcriptomics Saponin biosynthesis Identification of enzymes related 
to the biosynthesis of bioactive 
compounds

[187]

L. edodes Transcriptomics •Light-induced formation of Brown 
film (BF)
•Secondary metabolite biosyn-
thesis
•Gene expression and gene regula-
tion mechanisms

Uncovering molecular mecha-
nisms
Helping further functional and 
pathway analysis

[188]

L. edodes Transcriptomics and proteomics Temperature stress Offering information about the 
genes and proteins associated with 
different stresses

[219]

M. importuna Transcriptomics and proteomics Decomposition of exogenous 
nutrient bag

Providing information about the 
genes and proteins

[218]

S. commune Transcriptomics and proteomics Special odor formation Providing data regarding the genes 
and proteins

[221]

F. velutipes Transcriptomics and proteomics Development of the fruiting body Providing information about the 
genes and proteins

[222]

D. indusiata Transcriptomics and proteomics Development of the fruiting body Providing information about the 
genes and proteins

[223]

T. guangdongense Transcriptomics and proteomics •Development and growth
•Regulation of terpenoid, polysac-
charide, ergosterol, and adenosine 
production-related proteins during 
the development

Indicating the significance of post-
transcriptional procedures
Investigating mechanisms of 
development in fungi at the 
molecular level
Improving cultivation techniques

[104]

L. rhinocerotis Transcriptomics Secondary metabolite routes and 
little cysteine-rich proteins in the 
sclerotium

Discovering genes with consider-
able expression

[169]

Agrocybe aegerita Transcriptomics and proteomics Production and synthetic pathways 
of polysaccharides and sterol

Elucidating biosynthetic pathways
Providing beneficial data for con-
structing mushroom cell factories 
in the future

[129]
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of extracellular polysaccharides showed that 0.4  g/L of 
this amino acid results in the maximum production of 
0.79  g/L (45.49% increase). However, further optimiza-
tion regarding the time of L-phenylalanine addition gen-
erated more increase in the production of extracellular 
polysaccharides and their yield was raised from 0.56 to 
0.91 g/L by adding 0.4 g/L of the amino acid at 24 h, lead-
ing to a considerable increase of 62.50% [241].

Challenges of omics investigations and possible 
solutions
Based on the studies covered in this review, the statisti-
cal contribution of each division of omics studies (i.e., 
genomics, transcriptomics, etc.) to medicinal mushroom 
research is demonstrated in a pie chart in Fig. 5. Genom-
ics and integrated omics studies are both considered the 
most executed omics analyses on medicinal mushrooms. 
36% of genomics as well as 57.69% of integrated omics 
studies produced data that can provide a suitable basis 
for increasing the production of bioactive compounds 
in future attempts. According to the pie chart, the next 
most utilized omics investigation is transcriptomics and 
66.6% of the total transcriptomics analyses were allocated 
to those studies that can facilitate the overproduction of 
bioactive metabolites. The proteomics studies are in the 
third rank and 33.3% of these investigations have been 

performed with the purpose of facilitating the overpro-
duction of the desired metabolites. Finally, metabolomics 
studies have the least contribution to medicinal mush-
room research (4%).

The number of studies associated with bioactive com-
pound overproduction performed in each omics section 
is also presented in Fig.  5. The number of studies that 
have utilized more than one division of omics and per-
formed integrated omics investigations is indicated at the 
intersections. Therefore, most of the omics studies aim-
ing at improving the production of bioactive metabolites 
are in the field of combined omics, transcriptomics, and 
genomics, respectively. However, metabolomics and then 
proteomics investigations have had the least contribution 
to the overproduction of bioactive metabolites which is 
possibly due to the limitations and challenges of omics 
investigations.

For instance, proteome techniques are not meeting 
expectations, and reaching the complete proteome has 
not been accomplished yet. As gel-free proteomic tech-
niques hold promise for future proteomics research 
of edible mushrooms, offer a broader range of protein 
coverage (such as membrane protein), and allow in-
depth screening of protein synthesis and PTMs, design-
ing future omics studies based on these techniques may 
be advantageous for achieving more comprehensive 

Fig. 4 Commonly utilized approaches in metabolomics and a summary of the metabolomics applications in medicinal mushrooms
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proteomic data in medicinal mushrooms. On the other 
hand, processing and analyzing proteomics data (LC/
MS and LC–MS/MS data) is a very complicated mul-
tistep process which is the main bottleneck for many 
larger proteomics inquiries. These limitations can be 
conquered by effective sample preparation, modern 
mass spectrometry techniques, and extensive data pro-
cessing and data analysis [252]. Another challenge is 
that identification of all protein spots cannot be car-
ried out via proteomic analysis, and advancements 
in the not fully developed proteomics are dependent 
on experiment expenses and the availability of whole-
genome sequences of mushrooms. Finding strategies 

for lowering the costs can facilitate and accelerate this 
development.

As de novo transcriptome assembly and analyzing 
gene expression, even in species with no full genome 
data, have been facilitated by Illumina sequencing 
technology, transcriptomics can be assumed to be less 
dependent on genomic investigations compared with 
proteomics. Metabolomics studies also face several 
challenges such as incomplete coverage of metabo-
lites as well as hurdles and expenses in the experimen-
tal application, which may explain why they have been 
conducted to a lesser degree in medicinal mushrooms 
compared to other omics studies. For example, there are 
differences in sampling methods, sample preparation, 

Table 5 Results of using omics data for designing overproduction strategies in medicinal mushrooms

Strain Bioactive metabolite Production of the 
bioactive metabolite 
before using data 
obtained from omics 
studies

Production of the 
bioactive metabolite 
after using data 
obtained from omics 
studies

Employed strategy References

C. militaris with doubled 
cordycepin production 
induced by L-alanine

Cordycepin 30.04 mg/L 99.83 mg/L (about a 
threefold increase)

Overexpressing transcrip-
tion factors CCM_02568 
and CCM_01481 of the 
Zn2Cys6 transcript factors 
family

[198]

C. militaris Cordycepin 0.049 ± 0.002 g extracel-
lular cordycepin/g 
dry cell weight (using 
glucose as the carbon 
source)

0.094 ± 0.002 g extracel-
lular cordycepin/g dry cell 
weight (about a twofold 
increase)

Using xylose as the 
carbon source

[195]

C. militaris Cordycepin 0.1090 ± 0.0124 g/L 0.3776 ± 0.0055 g/L (3.5-
fold increase)

Designing synthetic 
media by exploiting a 
GSMM

[236]

G.lucidum MDU-7 Phenolics 0.01 mg/mL Galic acid 
equivalent

0.04 mg/mL Galic acid 
equivalent (about a 
fourfold increase)

Using  Cu2+ as an inducer [226]

G. lucidum Individual GAs (GA-Mk, 
GA-T, GA-Me, and GA-S)

GA-Mk: 5.6 µg/100 mg 
dry cell weight
GA-T: 15 µg/100 mg dry 
cell weight
GA-Me: 22 µg/100 mg 
dry cell weight
GA-S: 42 µg/100 mg dry 
cell weight

GA-Mk: 16 µg/100 mg 
dry cell weight (2.8-fold 
increase)
GA-T: 40 µg/100 mg 
dry cell weight (2.6-fold 
increase)
GA-Me: 43 µg/100 mg 
dry cell weight (1.9-fold 
increase)
GA-S: 53 µg/100 mg 
dry cell weight (1.2-fold 
increase)

Overexpressing the 
squalene synthase gene

[237]

G. lucidum Intracellular and extracel-
lular polysaccharides

Intracellular polysaccha-
rides: 16.84 mg/
100 mg dry weight
Extracellular polysaccha-
rides: 1.21 g/L

Intracellular polysaccha-
rides: 23.67 mg/
100 mg dry weight (1.4-
fold increase)
Extracellular polysaccha-
rides: 1.76 g/L (1.4-fold 
increase)

Overexpressing the 
α-phosphoglucomutase 
gene

[238]

G. lucidum Extracellular polysac-
charide

0.56 g/L 0.91 g/L
(1.6-fold increase)

Adding phenylalanine 
to the fermentation 
medium

[3,239]
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instrumentation, and data mining between laboratories 
as well as among scientists in the same laboratory. Also, 
since no single platform is capable of interpreting the 
complete metabolome due to their specific analytical 
limitations, it can be hard to decide on the best plat-
form for conducting metabolomic analyses. Still, the 
choice of analytical platform, which depends on both 
the sample and the purpose of the experiment, influ-
ences the result of the experiment and data recovery 
[253]. Different methods, which are frequently utilized 
in omics studies, are compared in Table 6, and a sum-
mary of their advantages and limitations is provided.

At the same time, individual omics investigation tech-
nology is faced with obstacles because modulation of 
cellular activity/metabolism levels has interaction with 
one another. Hence, it is crucial to use omic technolo-
gies integratively to obtain complete data [129]. Thus, 
although exploiting omics studies in medicinal mush-
room research brings about a multitude of benefits, 
omics technologies are not free of challenges, and since 
they complement each other, combining omics studies 
can be beneficial for both achieving improved production 
of bioactive metabolites and eliminating restrictions.

Conclusions and future perspectives
There is a growing demand for medicinal mushrooms 
and their bioactive compounds due to nutritional ben-
efits and pharmaceutical applications. Thus, increasing 
the production of these bioactive substances is essen-
tial for minimizing production expenses and meeting 

large-scale, commercial, and clinical trial demands. One 
of the methods which have helped in this regard is the 
exploitation of omics studies. In this review, the statistical 
contribution of each division of omics studies to medici-
nal mushroom research was discussed. The obtained 
omics data can be viewed as tools and prerequisites for 
systems biology, metabolic engineering, and cell factory 
construction endeavors. The cell factories obtained based 
on omics data will then be able to enhance the validness 
and rationality of synthetic biology and metabolic engi-
neering approaches. This review highlighted that using 
omics analyses sets the stage for improving the produc-
tion of bioactive compounds by discovering the func-
tional genes, enzymes, key metabolic compounds, and 
biosynthetic pathways associated with their biosynthesis. 
Facilitating strain improvement, identifying more tar-
gets and strategies for metabolic and pathway engineer-
ing, establishing networks of metabolism reassignment 
toward bioactive metabolites, and creating powerful 
platforms for answering subsequent research questions 
were other assistive roles of omics in medicinal mush-
room metabolite overproduction. Also, according to the 
quantitative data comparisons made among published 
investigations, it was demonstrated that creating over-
production strategies based on omics data can cause 
bioactive metabolite production values to experience 
increase ranging from 1.2 to fourfold. However, exploit-
ing omics technologies and data for designing overpro-
duction strategies in medicinal mushrooms is still far 
from sufficient.

Fig. 5 Statistical perspectives of omics investigations in medicinal mushroom research
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Combining different levels of omics analyses and 
developing tools for genetic engineering facilitates the 
elucidation of the mechanisms of bioactive compound bio-
synthesis by higher fungi including medicinal mushrooms. 
This can eventually result in the overproduction and com-
mercialization of the desired medicinal compounds. More-
over, combining omics data provides a comprehensive and 
systematic outlook, beneficial for the rational design and 
formulation of future overproduction strategies. Thus, 
aside from the need for a deeper focus on omics studies and 
the integration of their resulting data, future attempts must 
concentrate on improving these investigations and elimi-
nating their limitations through different strategies. For 
example, combining the obtained data from omics stud-
ies with systems biology technologies such as GSMMs can 
provide better conditions for ideally designing and opti-
mizing the cultivation mediums and increasing the yield of 
bioactive substances. It is important to mention that inte-
grating proteomics, transcriptomics, and metabolomics 
data for gaining a better understanding of cellular biology is 
considered an obstacle in functional genomics and systems 
biology. Hence, resolving these issues in omics technolo-
gies can be noticeably helpful in improving the production 
of bioactive compounds. Also, as whole-genome sequences 
of these mushrooms continue to become accessible, we can 
expect progress in the field of omics studies, especially pro-
teomics, in the future.
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