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Abstract 

Background  A number of antimicrobial peptides (AMPs) hold promise as new drugs owing to their potent bacte-
ricidal activity and because they are often refractory to the development of drug resistance. Cryptdins (Crps) are a 
family of antimicrobial peptides found in the small intestine of mice, comprising six isoforms containing three sets of 
disulfide bonds. Although Crp4 is actively being investigated, there have been few studies to date on the other Crp 
isoforms. A prerequisite for detailed characterization of the other Crp isoforms is establishment of efficient sample 
preparation methods.

Results  To avoid degradation during recombinant expression of Crps in E. coli, co-expression of Crps with the 
aggregation-prone protein human α-lactalbumin (HLA) was used to promote the formation of stable inclusion bodies. 
Using this method, the production of Crp4 and Crp6 by the BL21 strain was effective, but the expression of other Crp 
isoforms was not as efficient. The results of a cell-free system study suggested that Crps were degraded, even though 
a substantial amounts of Crps were synthesized. Therefore, using the Origami™ B strain, we were able to significantly 
increase the expression efficiency of Crps by promoting the formation of erroneous intermolecular disulfide bonds 
between HLA and Crps, thereby promoting protein aggregation and inclusion body formation, which prevented 
degradation. The various Crp isoforms were successfully refolded in vitro and purified using reversed-phase HPLC. In 
addition, the yield was further improved by deformylation of formyl-Crps. We measured the antibacterial activity of 
Crps against both Gram-positive and Gram-negative bacteria. Each Crp isoform exhibited a completely different trend 
in antimicrobial activity, although conformational analysis by circular dichroism did not reveal any significant steric 
differences.

Conclusion  In this study, we established a novel and efficient method for the production of the cryptdin family of 
cysteine-containing antimicrobial peptides. Additionally, we found that there were notable differences in the anti-
bacterial activities of the various Crp family members. The expression system established in this study is expected to 
provide new insights regarding the mechanisms underlying the different antibacterial activities of the Crp family of 
peptides.
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Introduction
Antimicrobial peptides (AMPs) are the primary factors 
of innate immunity and are the frontline of biological 
defense mechanisms against infection [1]. Antimicrobial 
peptides exhibit antimicrobial action, from a low concen-
tration against Gram-negative bacteria to Gram-positive 
bacteria, fungi, yeast, spirochetes, protozoa, and ulti-
mately viruses [2, 3]. Most AMPs are positively charged 
[4, 5] and are thought to exhibit microbicidal activity 
through a membrane-disrupting mechanism due to their 
interaction with negatively charged microbial mem-
branes. However, the detailed mechanisms of membrane 
destruction and other such phenomena remain largely 
unknown. Recently, the emergence of antibiotic-resistant 
bacteria has become a limitation in the use of antibiotics 
[6]. AMPs have attracted considerable attention owing 
to their potent activity and unique antibacterial mecha-
nisms [7–9].

Cryptdins (Crps) are a type of AMP, also known as 
α-defensins, found in mouse intestinal Paneth cells 
[10]. It has been reported that Crps contribute to the 
antibacterial barrier function of the small intesti-
nal mucosa, and the selective activity of Crps may be 
related to the composition of the intestinal micro-
biota in  vivo and homeostasis of the entire intestine 
[11–13]. Furthermore, low Crp levels are thought to 
be closely related to dysbiosis, which is an abnormal-
ity of the intestinal microflora, and the various diseases 
it induces. Studies in mice have shown that Crohn’s 
disease, which is a type of inflammatory bowel disease 
[14], as well as graft-versus-host disease [15, 16], which 

is a harmful immune response after bone marrow 
transplantation, and depression caused by psychologi-
cal stress [17] are strongly associated with abnormali-
ties in Crp concentration or quality. Similar to other 
α-defensins, Crps have a characteristic three-stranded 
β-sheet structure containing six cysteine residues that 
form three disulfide bonds between Cys1–Cys6, Cys2–
Cys4, and Cys3–Cys5 [18]. There are six different iso-
forms of Crp (Fig. 1; Table 1) [19], and most studies to 
date have been conducted on Crp4 [20–22] and only a 
few on other Crps. The level of gene expression of dif-
ferent Crps in various positions in the small intestine 
differs, and their dissimilar characteristics indicate that 
different isoforms appear to have specific roles in the 
small intestine [19, 23–25]. A better understanding of 
Crps requires them to be produced in a more efficient 
manner.

Recombinant expression is an economical method 
of protein production. However, recombinant produc-
tion of AMPs has been hindered because of their ten-
dency to undergo degradation by host proteases and/or 
because they are toxic to the host cells [26, 27]. The for-
mation of inclusion bodies is known to be a method that 
can prevent these undesirable events from taking place 
[28–31]. However, because of the high solubility of AMPs 
as a result of their high positive charge, simple expres-
sion often makes it difficult to form inclusion bodies of 
them. To solve this limitation, we developed a method in 
which AMPs are successfully co-expressed as inclusion 
bodies with aggregation-prone and negatively charged 
human α-lactalbumin (HLA) [32–34]. The electrostatic 
and hydrophobic interactions between AMPs and HLA 
are presumably responsible for the enhanced inclusion 
body formation. Using this expression system, we have 
previously succeeded in mass expression of Crp4, but the 

Table 1  Characteristics of cryptdins

Molecular weight of fully reduced form (Mw), isoelectric point (pI), and grand 
average of hydropathy (GRAVY). Charge was calculated from the values of Asp, 
− 1; Glu, − 1; Arg, + 1; Lys, + 1 under neutral conditions

Crps Mw PI GRAVY score Charge

Crp1 4253.12 9.61 − 0.483 + 7

Crp2 4384.32 9.86 − 0.647 + 8

Crp3 4411.39 9.99 − 0.736 + 9

Crp4 3886.55 9.86 − 0.397 + 8

Crp5 4339.32 9.86 0.169 + 8

Crp6 4267.21 9.61 − 0.339 + 7

Fig. 1  Amino acid sequences of the six Crps. Some amino acid 
residues are color-coded as follows: Cys, yellow; Arg/Lys, blue; Glu/
Asp, red. The three disulfide cross-links (cysteines 1–6, 2–4, 3–5) 
are also depicted. Dashes in lines of sequence indicate residues 
of identity with Crp1; and amino acids listed in lines of sequence 
indicate differences between each Crp and Crp1; asterisks in the 
Crp4 sequence indicate filler characters introduced to maximize the 
alignment
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application of this method to other Crp isoforms has not 
been investigated to date.

Thus, this study examined the application of this 
method to the production of Crp isoforms other than 
Crp4. Interestingly, despite the homology between Crp 
isoforms, there were large differences in their expression 
levels. We sought to increase their expression levels by 

examining the causes of this difference and by investigat-
ing new methods to promote inclusion body formation. 
Using the various Crps ultimately obtained, we report the 
results of the verification of the antimicrobial activity dif-
ferences between them.

Results and discussion
Co‑expression of the various Crp isoforms 
with aggregation‑prone proteins
When various Crp isoforms were expressed using the 
pET overexpression system with E. coli Bl21 strain and 
T7 promoter-driven gene expression, little Crp expres-
sion was observed after IPTG induction (Fig.  2). It is 
thought that AMPs which require disulfide cross-linking 
to form their stable conformation are often degraded 
because of their instability when expressed in a reducing 
intracellular environment, thus resulting in a low level of 
production. Therefore, we tested our previously devel-
oped expression system [32–34] that promotes inclusion 
body formation by co-expression of AMPs with HLA, 
which has a high propensity for aggregation (Fig.  3a). 
Tricine-SDS-PAGE of overexpressed inclusion bodies 
showed a clear increase in Crp4 expression, consistent 
with our previous results, as well as an increase in Crp6 
expression (Fig. 3b, c). However, although the expression 

Fig. 2  Tricine-SDS-PAGE of Crp expression without partner protein 
using the BL21(DE3) strain. Lane M: marker; Lanes 1–6: whole-cell 
lysates of cryptdins 1–6

Fig. 3  Co-expression of Crps using the E. coli BL21(DE3) strain. a Schematic outline of the method for promoting inclusion body formation using 
the BL21(DE3) strain. HLA, green; Crp, red. When co-expressed with aggregation-prone HLA, Crp forms a stable inclusion body (black arrow). If it 
does not form, host proteases degraded the expressed Crp (gray arrows). b Tricine-SDS-PAGE results of the expression level of Crps. Lane M: marker; 
Lanes 1–6: precipitates of Crp1–6. c The intensity data of the expression of Crps relative to Crp4. n = 3 for each



Page 4 of 15Song et al. Microbial Cell Factories            (2023) 22:9 

was increased compared with the expression of the pep-
tides alone, the effect was minor for Crp1 and very minor 
for Crp2, Crp3, and Crp5.

Two main reasons come to mind why this co-expres-
sion system did not result in enhanced expression. First, 
when ribosomes synthesized the different Crp isoforms, 
the synthesis levels were different, leading to significant 
differences in the final amount produced. The second 
possibility is that there was a difference in the efficiency 
of inclusion body formation, even though there was not 
much difference in the level of ribosome synthesis for 
each peptide.

Confirmation of the amount synthesized by ribosomes 
using a cell‑free synthesis system
Therefore, we first verified the amount of each Crp iso-
form synthesized by ribosomes using the PURE cell-
free expression system [35–37]. Because the PURE 
system is a fully reconstituted cell-free system using E. 
coli ribosomes, it allows comparison of the synthesis of 
each Crp isoform by ribosomes in the absence of the 
effects of intracellular protease degradation [38–40]. 
The plasmid containing the genes coding for HLA and 
Crp was added to the expression system and allowed 
to react for 4  h, and the obtained product was con-
firmed by tricine-SDS-PAGE (Fig.  4). With the excep-
tion of Crp5, the expression levels of Crp1, Crp2, and 
Crp3 were comparable to those of Crp4 and Crp6. This 
suggests that the reason why low levels of insoluble 
granules were previously obtained with Crp1, Crp2, 
and Crp3 in the co-expression system with HLA in E. 
coli may be due to a limitation of the efficiency of their 
formation once synthesized, while for Crp5, the actual 
amount synthesized by the ribosomes may be limiting. 
As shown in Additional file  1: Table  S1, Crp2, Crp3, 
and Crp6 have extremely high sequence homology 
compared with Crp1, whereas Crp5 has low homol-
ogy. Therefore, the low expression of Crp5 by ribo-
somes compared with the other Crp isoforms may be 
sequence-specific. It is possible that the low production 
of Crp5 was not only due to the abundance of tRNA 
[41], but also its DNA sequence, which resulted in the 
structure of its mRNA not being conducive to transla-
tion by the ribosomes of E. coli [42]. The folding free 
energy of mRNA is responsible for its secondary struc-
ture formation and stability. It is known that the forma-
tion of secondary structure near the ribosome binding 
site, the Shine–Dalgarno (SD) sequence, of mRNA 
interferes with ribosome binding and reduces transla-
tion efficiency [43–45]. Thus, preventing the formation 
of secondary structure of such mRNAs may increase 
the efficiency of Crp5 synthesis by the ribosome and 
improve production efficiency. Silent mutations using 

synonymous codons that do not alter the amino acid 
sequence may be effective for this purpose. For exam-
ple, it has been reported that by the substitution of syn-
onymous codons, reducing the GC rate, increasing the 
mRNA folding free energy at the 5′-terminal ends, and 
thus making the secondary structure of mRNA more 
unstable, can lead to an increase in protein expression 
[46, 47]. In the production of Crp5, it may be possible 
to increase production efficiency by considering using 
such techniques to increase the amount of Crp5 syn-
thesized on the ribosome. In contrast, it is unclear why 
Crp1, Crp2, and Crp3, which are highly homologous to 
Crp6 and are not limited by ribosomal synthesis, were 
not efficient in terms of inclusion body formation. Pre-
vious studies have shown that electrostatic and hydro-
phobic interactions play an important role in efficient 
inclusion body formation in our co-expression system. 
However, we could not find any trend in Crp family iso-
electric points or GRAVY scores (Table  1) that might 
explain the success or failure of inclusion body forma-
tion. Various culture conditions, such as the type of 
medium, the culture temperature, and IPTG induction 

Fig. 4  Confirmation of the synthesis of Crps by ribosomes using the 
PURE system. a Tricine-SDS-PAGE results of the synthesis of Crps. Lane 
M: marker; Lanes 1–6: whole-cell lysates of Crp1–6; Lane 7: negative 
control. b The intensity data of the synthesis of Crps relative to Crp4. 
n = 3 for each
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conditions were examined with the aim of achieving 
more efficient inclusion body formation, but unfortu-
nately, no improvement in the expression was observed 
(data not shown).

Enhancement of inclusion body formation by disulfide 
cross‑link formation
Based on these results, we sought to promote the for-
mation of insoluble granules by forming non-natural 
disulfide cross-links between the partner protein and 
the Crps (Fig.  5a). The cellular redox state of normal E. 
coli, such as BL21, is reducing, which generally precludes 
disulfide cross-link formation. In contrast, the Origami™ 
B strain is an expression host developed to obtain pro-
teins with natural disulfide bond formation in the cell by 
the introduction of mutations in trxB and gor [48, 49], 
thereby creating an oxidizing redox state in the cells. 
Therefore, in this study, we sought to promote the for-
mation of non-natural disulfide cross-links, contrary to 
the original purpose of using the Origami™ strain. As 
expected, using the Origami™ B strain greatly improved 
the expression levels of Crp1, Crp2, and Crp3 (Fig.  5b, 
c). There was not, however, a significant increase in Crp5 
expression, suggesting that, as expected, the amount of 
synthesis by the ribosomes is limiting for Crp5.

The Origami™ strain is a frequently used host for the 
efficient formation of wild-type disulfide bonds and has 
been used with great success [50–52]. However, to the 
best of our knowledge, this is the first report of the use of 
unnatural-type disulfide bond formation in cells to pro-
mote inclusion body formation. This approach has great 
potential as a versatile technique for the efficient forma-
tion of inclusion bodies of peptides that are otherwise 
prone to degradation in the cell.

Large‑scale overexpression and purification of Crps
Large-scale culture and purification conditions were 
investigated to obtain abundant quantities of individual 
Crp peptide isoforms. After assessing various incubation 
conditions, the optimal induction condition was found 
to be 30  °C for 6  h [53, 54]. The inclusion complexes 
containing Crp and HLA were separated by solubiliz-
ing them with a denaturing agent containing a reducing 
agent to cleave the disulfide bonds between them, fol-
lowed by purification using cation exchange chroma-
tography (Additional file  1: Fig. S1). Tricine-SDS-PAGE 
showed that each main peak contained a Crp isoform, 
but the amount of Crp5 was insufficient to allow fur-
ther experiments to be conducted (data not shown). One 
method for forming an inclusion body of the peptide is to 

Fig. 5  Co-expression of Crps using the E. coli Origami™ B (DE3) strain. a Schematic outline of the newly investigated method for promoting 
inclusion body formation by disulfide bond cross-linking using the E. coli Origami™ B (DE3) strain. HLA, green; Crp, red; disulfide cross-link, 
yellow. Use of the Origami™ B (DE3) strain, which has an intracellular oxidative environment, as an expression host allows the formation of 
non-natural disulfide cross-links between aggregation-prone HLA and Crp. This is expected to result in more efficient inclusion body formation. b 
Tricine-SDS-PAGE results of the expression of Crps. Lane M: marker; Lanes 1–6: precipitates of Crp1–6. Lane7: Precipitate of Crp4 by BL21 strain was 
used as a control. c The intensity data of the expression of Crps relative to Crp4 using the BL21(DE3) strain. n = 3 for each
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fuse the peptide to a highly insoluble protein, such as KSI, 
as used with the pET31 expression vector [55, 56]. How-
ever, this method requires chemical cleavage with CNBr, 
or another chemical cleavage must be performed, to sep-
arate the peptide from the fusion protein. Such cleavage 
methods may result in poor selectivity and undesirable 
side reactions. Our method using co-expression is supe-
rior in the sense that it can efficiently separate the part-
ner HLA from the target peptide using a simple reducing 
agent containing a denaturing agent.

Subsequently, refolding was performed by removal of 
the urea, β-mercaptoethanol, and salts by dialysis. With 
the exception of Crp5, the product obtained after dialy-
sis could be purified by reverse-phase HPLC. Each puri-
fied Crp isoform could thereby be separated into two or 
three peaks, as shown in Fig. 6. The products were ana-
lyzed using MALDI-TOF mass spectrometry, and the 
results obtained are indicated above the peaks in Fig. 6. 

Among these, the molecular weight of peak (1) of each 
Crp isoform was apploxymetly 6 Da smaller than that of 
its fully reduced peptide (Table  1), indicating that Crps 
that refolded successfully by forming three disulfide 
bonds were obtained using this expression purification 
system. In addition, peak (2) had a molecular weight 28 
Da larger than that of peak (1), which is thought to be 
due to modification of the N-terminal methionine by a 
formyl group [57, 58]. For Crp4, a peak (*) with a smaller 
molecular weight was observed earlier than peak (1). This 
is because the side chain length of glycine, which is the 
amino acid following the N-terminal methionine of Crp4, 
is sufficiently short for the N-terminal methionine to be 
cleaved by methionine aminopeptidase [59]. The yields of 
the various products are listed in Table 2.

The residual formyl groups on the N-terminal methio-
nine were further investigated. For comparison, the 
results of Crp6 expression using the BL21 strain showed 

Table 2  The yield of each Crp isoform

The total yield of Crps was obtained by adding the amount of Crps after purification by RP-HPLC to the amount of Crps after deformylation
a Crp4 represents the sum of the total amounts of Crp4 with and without methionine

Purification step Yield (mg/L of culture)

Crp1 Crp2 Crp3 Crp4 Crp6

CIEX Crude extract 5.0 5.2 5.3 8.5 9.1

RP-HPLC Crps 1.5 0.95 0.92 1.9a 1.8

Formyl-Crps 1.7 2.3 2.3 5.3 3.0

Deformylation Crps 1.4 2.0 1.9 4.2 2.2

Total Crps 2.9 3.0 2.8 6.1a 4.0

Fig. 6  Large-scale purification of refolded Crps by RP-HPLC. The molecular weight of each peak was determined by MALDI-TOF mass spectrometry. 
For Crp1, Crp2, Crp3, and Crp6, the two observable peaks are: (1) Crps; and (2) formyl Crps (due to the difference of approximately 28 Da determined 
by mass). For Crp4, the three observable peaks are: (*) Crp4 without methionine (due to the side chain length of the second amino acid of Crp4 
[59]); (1) Crp4; and (2) formyl Crp4. Peptides produced in 500 mL of medium were loaded
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that the product also contained Crp6 with N-terminal 
methionine formylation (Additional file 1: Fig. S2); how-
ever, the amount was clearly lower than that obtained 
using the Origami™ B strain. Normally, the N-termi-
nal formyl group is removed by the intracellular pep-
tide deformylase (PDF) [58, 60]. However, it has been 
reported that when excessive amounts of recombinant 
proteins are expressed, the degradation efficiency of PDF 
is reduced, and the products contain proteins with for-
mylmethionine [57]. Furthermore, it has been reported 
that nascent peptides with less than 50 amino acids read-
ily retain the formyl group [61]. Also, the activity of PDF 
is affected by certain metal ions in E. coli, such as Fe2+ 

[62–64]. The present results suggest that the oxidative 
intracellular environment of the Origami™ B strain may 
have affected the Fe2+ concentration, decreased PDF 
activity, and hence resulted in an increase in the content 
of formylated Crp in the product.

Attempts to increase the yield by chemical deformylation
To further increase the yield of Crps, we first investigated 
the conditions for deformylation by the acidic hydroly-
sis method [65, 66] using purified formylated Crp6. The 
results of the analysis using RP-HPLC after reaction with 
various concentrations of HCl for more than 20  h are 
shown in Fig. 7a. After acid hydrolysis, three main peaks 

Fig. 7  The result of deformylation of Crp6 by acid hydrolysis. a RP- HPLC results of Crp6 treated with different concentrations of HCl, 0 (control), 0.3, 
0.6, and 2 M HCl. The three observable peaks are: (*) by-product; (1); Crp6 after deformylation; and (2) undeformylated Crp6. b Bar graph showing 
the proportion of each product, confirmed by the peak area by RP-HPLC. The molecular weight of Crp6 was determined by MALDI-TOF mass 
spectrometry. Approximately 100 µg of Crp6 was loaded
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were observed. The amount of Crp6 that was success-
fully deformylated (Peak 1) from the formylated Crp6 
(Peak 2) increased in an HCl concentration-dependent 
manner, but the byproducts (peaks indicated by *), which 
were further hydrolyzed between the aspartic acid at 
the fourth position and the leucine at the fifth position, 
also increased. Among these, more than 70% of the for-
myl-Crp6 was successfully deformylated into Crp6 after 
exposure to 0.6 M hydrochloric acid, and the proportion 
of byproducts was not high (Fig. 7b). Therefore, consid-
ering the proportion of deformylation and byproducts, 
hydrolysis with 0.6  M HCl was determined to be the 
optimal condition, and other Crps were also treated with 
0.6 M HCl (Additional file 1: Fig. S3), and their compo-
nent ratios are listed in Additional file  1: Table  S2. The 
proportion of successful deformylation for each Crp iso-
form exceeded 80%.

The yields of successfully deformylated Crps and the 
final Crp isoform yields obtained were calculated and are 
presented in Table 2. Chemical deformylation resulted in 
a significant increase in the production of each Crp iso-
form, with yields reaching at least 3 mg/L of medium.

Comparison of the characteristics of the antimicrobial 
activity of Crps
The bactericidal activity of Crps against Gram-positive 
bacteria (Staphylococcus aureus) and Gram-negative bac-
teria (Escherichia coli) was analyzed. Crp4 exhibited the 
strongest antimicrobial activity against E. coli, followed 
by Crp3 and Crp2. Crp1 and Crp6 exhibited the weakest 
activities (Fig. 8a). For instance, 5.0 µg/mL Crp3 or Crp4 
was sufficient to kill all E. coli, but the same concentra-
tion of Crp1 or Crp6 could only kill 20% of the bacte-
ria. However, Crp4 exhibited very low activity against S. 
aureus (Fig. 8b). At a concentration of 10 µg/mL, it still 
only killed approximately 10% of the bacteria. In contrast, 
the other four Crps all exhibited very strong bactericidal 
activity, with their minimum bactericidal concentration 
(MBC) values below 1.5 µg/mL, which was much lower 
than the MBC of these Crps against E. coli. These trends 
clearly indicate that each Crp isoform has a very different 
antimicrobial spectrum.

The number and variety of bacteria in different parts 
of the mouse small intestine vary. Paneth cells at the 
bottom of small intestinal crypts of the mouse respond 
immediately to stimulation by a variety of pathogens, 
including many different bacteria, to secrete intracel-
lular granules rich in Crps [67–69], killing pathogenic 
bacteria to contribute to innate immunity. It has been 
reported that different parts of the mouse small intes-
tine also express each Crp isoform to different degrees 
[13, 70, 71], suggesting that each Crp isoform may play 
a different role in the defense of the small intestine [25]. 

For this reason, our finding that each Crp isoform exhib-
ited a different antimicrobial spectrum is very interest-
ing. To the best of our knowledge, no reports to date 
have directly or simultaneously compared the MBCs of 
many types of Crps. In the case of E. coli in this study, 
with the exception of Crp4, the other four Crps exhibited 
activities that were highly consistent with their electric 
charge (Table 1), indicating that in the case of E. coli, the 
activity exhibited by Crps is likely to be affected by the 
charge strength. The microbicidal activity of these four 
Crps (Crp1, Crp2, Crp3, and Crp6), but not Crp4, against 
E. coli was stronger the higher their positive charge 
(Table 1). These four Crp isoforms have a high degree of 
sequence homology, differing by only 2–3 amino acids 
(Fig.  1, Additional file  1: Table  S1). This suggests that 
the activity of these Crps against E. coli depends on the 
strength of their electrostatic interaction with the mem-
brane and that the basic mechanism of action of mem-
brane disruption is similar. Unlike E. coli, the activity of 
Crps against S. aureus was not specifically related to their 
electric charge and differed largely between Crp4 and the 
other Crps. This particularly weak activity against Gram-
positive bacteria may be because Crp4 has a sequence 
that is considerably different from the other Crps, and 
the mechanism of action is also different. Additionally, 
the antibacterial activity of Crp3 against S. aureus was 
slightly stronger than that of Crp1, Crp2, and Crp6. The 
only primary sequence difference between Crp3 and 
Crp2 is at position 11 (Crp3 has a lysine and Crp2 has a 
threonine). It has been reported that amino acids at posi-
tions 11 and 16 of Crp1, Crp2, Crp3, and Crp6 are pre-
dicted to be located at conserved turns on the molecular 
surface based on analogy with HNP-1, HNP-3, NP-2, and 
NP-5 [19, 24, 72]. Based on these findings, the amino acid 
at position 11 may affect the interaction between Crps 
(Crp1, Crp2, Crp3, and Crp6) and S. aureus.

Comparison of steric structures by circular dichroism (CD)
To obtain information on the steric structures of the 
five Crps, CD spectra were measured under differ-
ent conditions, and the results are shown in Fig.  9. 
The steric structure of Crp4 has been studied previ-
ously using CD and NMR [20, 73, 74], and it has been 
reported that the three disulfide bonds stabilize the 
three β-strands. Consistent with previous results, Crp4 
in aqueous solution exhibited a negative maximum at 
approximately 200  nm and a broad positive maximum 
at approximately 225  nm (Fig.  9a). These spectral fea-
tures were generally common in other Crps, suggesting 
that they form a conformation similar to that of Crp4. 
Furthermore, CD spectra were measured in highly 
hydrophobic (40% TFE) and membrane-mimetic (10 
mM SDS) environments, but no significant changes 
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in the spectra in aqueous solution were observed for 
any of the Crps (Fig. 9b, c). This suggests that all of the 
Crps had a stable secondary structure due to disulfide 

cross-linking and that their steric structures were stable 
in various environments. Under all measurement con-
ditions, the CD spectrum of Crp4 exhibited a stronger 

Fig. 8  Antimicrobial activity of Crps against bacteria. a Approximately 1 × 107 CFU/mL E. coli was exposed to peptides at 0, 1.25, 2.5, 5, 7.5, 
and 10 µg/mL; b approximately 1 × 107 CFU/mL S. aureus was exposed to peptides at 0, 0.25, 0.5, 1, 1.5, 2, and 10 µg/mL. Data are presented as 
means ± the standard error of the mean (SEM). n = 6 for both a and b 
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Fig. 9  Circular dichroism (CD) spectra measured from 280 to 190 nm at 25 °C. Each peptide, at 30 µM, was measured in a 10 mM 
phosphate-buffered saline (PBS, pH 7.4); b 40% trifluoroethanol (TFE); c 10 mM sodium dodecyl sulfate (SDS)
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broad peak at 225  nm compared to the other Crps. 
Unfortunately, it is unclear at this time whether this 
reflects a difference in the steric structure associated 
with the antimicrobial spectrum characteristic of Crp4 
or simply a difference in the primary sequence.

Conclusion
In this study, to form inclusion bodies so as to avoid 
degradation of cysteine-containing antimicrobial pep-
tides, we devised a method involving the use of E. 
coli with an oxidative intracellular environment and 
applied it to the production of the Crp family of pep-
tides. This approach allowed successful production of 
five recombinant Crp isoforms. Crp5, which could not 
be produced, was found to be limited by a low level 
of synthesis at the ribosomal level. Although E. coli 
strains with an oxidative intracellular environment pro-
duced peptides with a formyl group on the N-terminal 
methionine, we showed that deformylation by hydrol-
ysis under acidic conditions was effective at increas-
ing production. The Crp family of peptides obtained 
using this experimental system exhibited significant 
differences in their antimicrobial spectra, even though 
their basic steric structures appeared to be similar. The 
expression system developed in this study is expected 
to elucidate the mechanism of action responsible for 
differences in the antimicrobial spectrum of the Crp 
family of peptides. In particular, the production of pep-
tides labeled with 15N and 13C stable isotopes using this 
expression system is expected to be useful for future 
detailed structure and interaction analyses by NMR.

Materials and methods
Strains, vectors, and reagents
DNA cloning was performed using the E. coli DH5α 
strain and pCOLADuet1 and pET-16b plasmid. E. coli 
BL21(DE3) and E. coli Origami™ B(DE3) were used for 
expression analysis. All E. coli strains and vectors were 
obtained from Novagen. DNA extractions were per-
formed with a FastGene®  Plasmid Mini Kit (NIPPON 
Genetics Co., Ltd.), and the FastDigest®  restriction 
enzymes XhoI, NdeI, NcoI, BamHI, and BglII were pur-
chased from Thermo Fisher Scientific.

Plasmid construction
In this study, because co-expression was required, the 
DNA sequences of the partner protein HLA and the tar-
get Crps were inserted into the pCOLADute1 plasmid 
(Fig. 10a). In addition to the pCOLADuet vector, which 
is kanamycin-resistant and has a ColA replication origin, 
similar insertions were made into the pET-16b plasmid, 
which is ampicillin-resistant and has a ColE1 replica-
tion origin (Fig.  10b). Thus, the vectors containing the 
HLA and Crps genes can be expressed in the kanamycin-
resistant Origami™ B strain. The 372 bp fragment encod-
ing the partner protein HLA was inserted into the NcoI 
and BamHI restriction sites of the vector pCOLA-Duet1, 
and the 99–108  bp fragments encoding the target pro-
tein Crp isoforms were inserted into the NdeI and XhoI 
restriction sites. E. coli DH5α were transformed with the 
plasmids, and positive transformants were screened on 
lysogeny broth (LB) plates and confirmed using a DNA 
sequencer (Applied Biosystems 3130 Genetic Analyzer). 
The resulting pCOLA-Duet1 plasmids were digested 

Fig. 10  Schematic representation of the expression vectors. a pCOLA-Duet1-HLA-Crp vector. b pET16b-HLA-Crp vector. P, T7 promoter; HLA, HLA 
gene; Crp, Crp gene; T, T7 terminator
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with the endonucleases BglII and XhoI, and the frag-
ments were inserted into pET-16b. After confirmation 
by DNA sequencing, the expression strains were trans-
formed with the vectors.

Expression of Crps in the E. coli expression system
The E. coli BL21(DE3) and Origami™ B(DE3) strains 
transformed with the plasmid pET-16b-HLA-Crps were 
inoculated into 5 mL of LB medium containing 50  µg/
mL ampicillin and incubated at 37  °C with shaking at 
180  rpm until the absorbance at 600  nm reached 1.0. 
Expression was induced by the addition of IPTG, and 
the bacterial liquid was subjected to shaking at 180 rpm 
for 4  h. The cells were collected by centrifugation at 
10,000 rpm for 3 min and washed with disruption buffer 
(20 mM Tris-HCl (pH 8) and 1 mM EDTA). One milli-
liter of the medium was resuspended in 100 µL of buffer 
and disrupted with a sonicator (Misonix™ Microson™ 
Ultrasonic Cell Disruptor XL2000) on ice. The mixture 
was centrifuged at 10,000 rpm for 3 min. The amount of 
protein in the obtained supernatant and pellet was con-
firmed by Tricine-SDS-PAGE (n = 3 for each).

Expression in PURE system
The plasmid pET-16b-HLA-Crps was added to the PURE 
system (PUREfrex2.0) at a concentration of 2 ng/µL. The 
entire reaction was carried out in an RNase-free envi-
ronment. The cells were incubated at 37  °C for 4 h. The 
amount of protein in the reaction system was confirmed 
by Tricine-SDS-PAGE (n = 3 for each).

Large‑scale expression of Crps for purification
Origami™ B transformed with plasmid pET-16b-HLA-
Crps was inoculated into 50 mL of LB medium contain-
ing 50 µg/mL ampicillin and incubated overnight at 30 °C 
and 180 rpm. The mixture was centrifuged at 6000 rpm 
for 5 min and resuspended in 500 mL of LB medium con-
taining 50  µg/mL ampicillin. The culture was incubated 
at 37  °C with shaking at 120  rpm. Once the absorbance 
at 600 nm reached 1.0, 1 mM IPTG was added to induce 
protein expression. After culturing at 30  °C with shak-
ing at 120 rpm for 6 h, the bacterial solution was centri-
fuged at 6000 rpm for 10 min, and the bacterial cells were 
washed with disruption buffer and stored.

Purification and analysis of Crps
The obtained bacterial cells were resuspended in frag-
mentation buffer [20mM Tris-HCl (pH8.0), 1  mM 
EDTA], crushed in an ultrasonic crusher (Insonator 
201 M, KUBOTA) at 180 W for 30 min, and centrifuged 
at 4300×g for 20 min to obtain a precipitate containing 
inclusion bodies. The pellet was resuspended in a solu-
bilization buffer [50 mM glycine-NaOH (pH8.5), 3 mM 

EDTA, and 6  M urea, final pH 9.0] and incubated at 
24 °C with shaking at 180 rpm for 1 h so that almost all 
of the inclusion bodies were dissolved. After centrifuga-
tion at 7000×g for 20  min, the supernatant was loaded 
onto an SP Sepharose® FAST FLOW cation exchange 
column (Cytiva™) equilibrated with 50 mM glycine-
NaOH (pH 8.5), 3 mM EDTA, 6  M urea, and 20 mM 
β-mercaptoethanol, final pH 9.0. The bound Crps were 
eluted using a linear gradient of 0–1 M NaCl buffer. The 
fractions containing Crps were refolded twice at 4  °C 
using refolding buffer containing 50 mM glycine-NaOH 
(pH8.5), 2  M urea, 3 mM reduced glutathione, 0.3 mM 
oxidized glutathione, and 10% glycerol, final pH 9.0, for 
approximately 12  h each time, after which 0.1% acetic 
acid was dialyzed overnight to remove other compounds 
in the system. The dialyzed Crps were purified by RP-
HPLC using a COSMOSIL® Protein-R column (Nacalai 
Tesque). Elution was performed using a linear gradient 
of 0–50% acetonitrile and 0.1% TFA. Yields were calcu-
lated based on the absorbance at 280 nm. The molecular 
weights of the eluted Crps were determined by MALDI-
TOF-MS (autoflex™ speed, Bruker).

Deformylation
We added 0, 7.5, 15, and 50 µL of 6 M hydrochloric acid 
to 100 µL of formyl-Crp6 at a concentration of approxi-
mately 1 mg/mL, and ddH2O was added to bring the total 
volume to 150 µL. The final concentration of hydrochlo-
ric acid in each group was 0, 0.3, 0.6, and 2 M. A 100 µL 
aliquot of each of the other formyl-Crps at a concentra-
tion of approximately 1  mg/mL was deamidated with 
0.6 M hydrochloric acid.

After incubation at 37 °C for more than 20 h, the reac-
tion was terminated by the addition of 850 µL ddH2O, the 
pH was adjusted to 2–3 using NaOH, and RP-HPLC was 
used to analyze the amount of each component.

Antimicrobial activity assay
Gram-positive bacteria (Staphylococcus aureus, 
ATCC6538p) and Gram-negative bacteria (Escherichia 
coli, ATCC43827) were used to test the antibacterial 
activity. Both of these bacterial strains were cultured in 
3% TSB medium. After shaking at 37 °C until the absorb-
ance at 600 nm was 0.4, the cultures were centrifuged at 
9300×g for 5 min, and the pellets were washed twice with 
10 mM PBS, (pH 7.4), resuspended, and diluted tenfold 
(E. coli) and 20-fold with PBS. (S. aureus). After the Crps 
were freeze-dried, they were diluted to the correspond-
ing concentrations with PBS. The diluted bacteria (20 
µL aliquots) were mixed with 20 µL of the diluted Crps, 
and the concentration of the bacteria was 1 × 107 CFU/
mL. The mixtures were then incubated at 37  °C for 1 h, 
diluted 1000 times, and 50 µL was added to solid medium 
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containing 3% TSB. After overnight culturing at 37  °C, 
the survival rate was calculated by colony counting (n = 6 
for each).

Circular dichroism (CD) measurements
Circular dichroism (CD) data were collected using a 
Jasco J 725 spectropolarimeter (Jasco Inc.). Spectra were 
collected from 250 to 190 nm and scanned at 20 nm/min 
at 25 °C. The bandwidth was 1.0 nm, and each data point 
was scanned four times under nitrogen gas. The spectra 
were measured in three different environments: 10 mM 
phosphate-buffered saline (PBS), pH 7.4; 40% trifluoro-
ethanol (TFE); and 10 mM sodium dodecyl sulfate (SDS).

The mean residue ellipticity values, θ, were calculated 
using the formula below:

where n is the number of amino acid residues, C is the 
peptide concentration, and l is the optical pass length of 
the cell.
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