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Abstract 

Background  Although microalgae and plants are traditionally used for obtaining natural pigments, overexploitation 
and overharvesting threaten them. Bacteria represent a superior alternative for the production of pigments due to 
their ability to produce greater amounts in a short time without seasonal restrictions; furthermore, bacterial pigments 
have a wide range of uses and are safe and biodegradable. This study is the first on the production of ß-carotene as a 
promising bioactive agent from endophytic bacteria.

Results  The yellow pigment produced by the endophytic bacterium Citricoccus parietis AUCs (NCBI accession num‑
ber: OQ448507.1) was extracted by methanol and then purified and identified. One band was obtained by TLC analy‑
sis, which was identified as ß-carotene based on its spectroscopic and chromatographic characteristics. The pigment 
exhibited remarkable antibacterial, antioxidant and antidiabetic activities.

Conclusions  This research may serve as a valuable starting point for exploiting C. parietis AUCs as a potent source of 
ß-carotene for biomedical therapies. To validate the findings of this research, in vivo studies must be performed.
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Background
Since the 1980s, synthetic pigments have been exten-
sively used in numerous applications, including food, 
cosmetics, and pharmaceutical industries, but because 
of their harmful side effects, natural pigments are cur-
rently receiving greater attention due to their safety and 
environmentally friendly beneficial properties [1–3]. 
Although plant sources are widely employed for the 
extraction of natural pigments, seasonal variations have 
a direct impact on plant pigments, and widespread plant 
use puts valuable species at risk [4]. Microorganisms, 
on the other hand, have an advantage over plants in the 

synthesis and extraction of pigments since they develop 
quickly in affordable media regardless of the weather [5].

Carotenoids are among the pigments that are most 
commonly employed in human nutrition and health. 
These are isoprenoid macromolecules that are produced 
in a variety of species, such as plants, algae, fungi, and 
some bacteria [6]. Carotenoids have a wide range of 
biological functions, including antioxidant, anti-inflam-
matory, antibacterial, antidiabetic, and anti-cancer char-
acteristics, and they are used in a wide range of products, 
including food, feed, medications, and cosmetics [7].

Carotenoids are essential for bacteria because they 
shield them from UV light, reduce oxidative stress, and 
keep the cell membrane flexible at low temperatures [8]. 
The most promising alternative for the synthesis of nat-
ural carotenoids is bacteria because of their numerous 
unique features, such as quick and simple growth using 
affordable culture media, control over the conditions of 
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fermentation, and the potential for genetic modification 
[9]. In order to maximize the production and extraction 
yield of novel carotenoids from bacteria and to commer-
cialize bacterial carotenoids, efforts should be increased 
in this direction.

Although some studies have reported carotenoids-pro-
ducing bacteria from soils and marine environments [10], 
according to our knowledge no research on the produc-
tion and biological activities of carotenoids from endo-
phytic bacteria.  Considering the above facts, this study 
aimed to extract, characterize, and evaluate the expected 
in vitro biological potentials of the yellow pigment pro-
duced by the endophytic bacterium Citricoccus parietis 
AUCs.

Materials and methods
The experimental design included in this study is sum-
marized in Fig.  1. Three replicas were made for each 
experiment. The values were expressed as the means of 
three replicas ± standard errors.

Bacterial strain
Citricoccus parietis strain AUCs (accession number: 
OQ448507.1) is a yellow pigmented endophytic bacte-
rium (Fig. 2) previously isolated by us from the stem of 
the medicinal plant Calotropis procera.

Production and extraction of pigment
Strain AUCs was grown in nutrient broth for 72  h at 
35  °C and a shaking rate of 150  rpm. Pigment extrac-
tion was performed following the procedure described 
by Ezhil et  al. [11] with slight modification. Bacterial 
cultures were centrifuged, and pigmented biomass pel-
lets were collected. Methanol was mixed with bacterial 
pellets in a ratio of 2:1 (solvent/pellets, v/w), vortexed 
for 1 min and then incubated in water bath at 60  °C for 
15 min. The yellow colored supernatant was centrifuged 
and filtered. Solvent was evaporated, the extracted yellow 
pigment was weighted, and the yield of pigment produc-
tion was evaluated as µg per gram of cell biomass. The 
pigment extract was then stored in darkness at 4  °C for 
further study.

Pigment purification
The crude yellow pigment (1  mg) was re-dissolved in 
10 ml methanol and then subjected to Thin Layer Chro-
matography (TLC) analysis according to Kusmita et  al. 
[12]. On aluminum TLC plates (Silica Gel 60 F254, 
Merck® Darmstadt, Germany), the pigment extract 
was spotted along with ß-carotene (Sigma-Aldrich) as a 
standard. The plates were developed in a mixture of ace-
tone: n-hexane (6:4 v/v). The yellow band was scraped off 

from the silica plates. The retention factor (Rf ) was calcu-
lated according to Stahl [13].

Pigment identification
The scraped yellow bands obtained from TLC analy-
sis were eluted with methanol and subjected to ultra-
violet–visible spectrophotometer and high-performance 
liquid chromatography- diode array detector (HPLC–
DAD) analysis. The spectra of the yellow pigment were 
recorded at wavelengths of 350–600 nm by a T60U UV–
Vis spectrophotometer (PG Instruments Ltd). The data 
were compared with those reported by previous studies 
as well as ß-carotene (Sigma-Aldrich) as a standard [14].

Twenty microliter of the extract was injected onto 
an Hypersil ODS (C18) column (250 × 4.6  mm, 5  µm; 
Thermo Scientific). The column was eluted with acetoni-
trile and methanol (10:90 v/v) at a flow rate of 1.5  ml/
min and 30 °C. Detection was carried out by diode array 
detector at 400–500 nm [15]. The obtained results were 
compared with standard ß-carotene (Sigma-Aldrich).

Optimization of pigment production
One-factor-at-a-time method [16] was used to deter-
mine the optimum parameters of pigment production by 
C. parietis AUCs. The effect of different parameters i.e., 
culture media (nutrient broth, trypticase soy broth, and 
potato dextrose broth), pH values (5, 6, 7, 8, 9 and 10), 
temperatures (10, 15, 20, 25,30, 35 and 40  °C), incuba-
tion periods (24, 48, 72, 96 and 120 h) and shaking rates 
(0 (static), 50, 100, 150 and 200  rpm) on the pigment 
production was evaluated. Growth and pigment produc-
tion were measured spectrophotometrically at 600 and 
450 nm, respectively. Pigment concentrations were calcu-
lated using ß-carotene standard curve.

Growth and pigment production kinetics
Growth kinetics along with pigment production kinetics 
were determined by growing C. parietis AUCs in nutri-
ent broth at optimized conditions. Culture samples were 
collected every 10  h, and the growth was measured at 
600 nm. Culture samples were then centrifuged, the pig-
ment was extracted from the cell biomass, and it was 
weighed. Growth and pigment production were plotted 
against time.

In vitro antibacterial activity of C. parietis AUCs pigment
Four pathogenic bacteria, i.e., Gram positive (Staphylo-
coccus aureus ATCC 25923 and Streptococcus agalactiae 
ATCC 13813) and Gram negative (Pseudomonas aer-
uginosa ATCC 9027 and Klebsiella pneumonia ATCC 
4352), were used to evaluate the antibacterial activity of 
the pigment produced by C. parietis AUCs by agar well-
diffusion following the Clinical and Laboratory Standards 
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Fig.1  Experimental design showing the steps of the study, including pigment production by C. parietis AUCs, extraction, purification, identification, 
and evaluation of its in vitro biological activities
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Institute (CLSI) [17]. These bacteria were obtained from 
the stock cultures of the bacteriology lab, Botany Depart-
ment, Faculty of Science, Aswan University, by Prof. Dr. 
Usama Abdul-Raouf (co-author), the head of the bac-
teriology lab. Pigment extract (1  mg/mL in methanol) 
was introduced into wells (6  mm) pierced in nutrient 
agar plates that were inoculated with 100  µL of bacte-
rial suspension (107 CFU/mL). The positive and negative 
controls were ampicillin solution (1 mg/mL) and metha-
nol, respectively. The diameters of inhibition zones that 
appeared around the wells after 48-h of incubation at 
35 °C were measured in millimeters.

In vitro antioxidant activity of C. parietis AUCs pigment
Total antioxidant activity
Total antioxidant activity of the pigment extract was 
evaluated using Phosphomolybdenum assay [18]. In a 
test tube, 1 mL of reagent solution (0.6 M H2SO4, 28 mM 
Na2HPO4 and 4  mM (NH4)6Mo7O24) was mixed with 
1  mL of pigment extract (1  mg/mL). The reaction mix-
ture was incubated in a water bath at 95 ± 2 °C for 90 min. 
Methanol and ascorbic acid were used as negative con-
trol and standard antioxidant compound, respectively. 
Absorbance was measured at 695 nm by a T60U UV/Vis 
spectrophotometer.

Free radical scavenging activity
The pigment’s ability to scavenge free radicals was esti-
mated using diphenyl picrylhydrazyl (DPPH) following the 
procedure of Jimoh et al. [19]. Briefly, 100 µL of fresh DPPH 
reagent prepared in methanol (0.1  mM) was mixed with 
100 µL of pigment extract (1 mg/mL in methanol). Metha-
nol was used as a control. Reaction was carried out in the 
darkness at the room temperature for 30 min. Absorbance 

was read at 517 nm and the percentage of scavenging activ-
ity was calculated as follows:

In vitro antidiabetic activity of C. parietis AUCs pigment
α‑Amylase inhibitory assay
The ability of C. parietis AUCs pigment to inhibit pancre-
atic α-amylase activity was determined according to the 
method of Sudha et al. [20]. Porcine pancreatic α-amylase 
(Sigma-Aldrich) solution (1 unit/mL) and starch solution 
(0.5%) were immediately prepared in phosphate buffer 
(20 mM, pH 6.9). In a test tube, 200 µL of α-amylase solu-
tion was added to 200 µL of the pigment extract and incu-
bated for 15 min at 37 °C. Then, 200 µL of starch solution 
was added and the reaction mixture was further incubated 
at 37 °C for 15 min. Tubes containing an identical mixture 
without the pigment extract served as a control. The reac-
tion was stopped by adding 200 µL of dinitrosalicylic acid 
reagent. Tubes were boiled in a water bath for 10 min and 
then cooled. The absorbance was measured at 540 nm. The 
percentage of α-amylase inhibition was calculated using the 
following equation:

Glucose uptake by yeast cell model
Yeast cells were used as a model to evaluate the effect of 
the present pigment on the efficiency of glucose uptake. 
The assay was performed following the method of Puli-
varthi et al. [21]. The suspension (10%, w/v) was prepared 
from commercial baker’s yeast (Saccharomyces cerevisiae) 
and was set overnight at 25  °C. The suspension was then 
centrifuged many times until it became clear. The pig-
ment extract (1 mg/mL) was mixed with 1 mL of glucose 
solutions (5 mM and 10 mM) and incubated at 37  °C for 
10 min. Then, 100 µL of yeast suspension was added, vor-
texed, and incubated at 37 °C for 60 min. The mixture was 
centrifuged, and the glucose content of the supernatant 
was estimated spectrophotometrically at 520  nm. Tubes 
containing all the contents except the pigment extract were 
used as controls, and metformin (1  mg/mL) was used as 
an antidiabetic drug. Glucose uptake (%) was calculated as 
follows:

Scavenging activity (% )

=

Absorbance of control− Absorbance of pigment

Absorbance of control
× 100

α− amylase inhibition (% )

=

Absorbance of control− Absorbance of pigment

Absorbance of control
× 100

Glucose uptake (% )

=

Absorbance of control− Absorbance of sample

Absorbance of control
× 100

Fig.2  The endophytic bacterium Citricoccus parietis AUCs grown on 
nutrient agar
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Results and discussion
Pigment production, purification and identification
A yellow pigment was produced by the endophytic bac-
terium C. parietis AUCs with a yield of 491.6 ± 5.5 µg/g 
biomass. The pigment was separated on TLC plates 
using a mixture of acetone and n-hexane at a 6:4 ratio. 
One yellow band was observed with an Rf value of 
0.87 (Fig.  3). The same Rf value was observed previ-
ously for ß-carotene of Micrococcus roseus [22], which 
indicated that the yellow pigment of C. parietis AUCs 
may be ß-carotene. Furthermore, the spectroscopic 
and chromatographic characteristics of the pigment 
were determined using UV/Vis spectrophotometer 
and HPLC–DAD. The UV/Vis spectra of the pigment 
extract were detected at wavelengths of 350–600  nm. 
The maximum peak was at 450 nm (Fig. 4), which indi-
cated the presence of carotenoid compound [23]. Our 
finding was in accordance with those of Dawoud et al. 
[24] and Naz et  al. [25], who reported that the maxi-
mum absorption of yellow pigment produced by Bacil-
lus sp. DBS4 and Mucor circinelloides was at 450  nm. 
The HPLC–DAD analysis revealed one peak at 4.9 min, 
which was identified as β-carotene (Fig. 5).

Optimization of pigment production
The growth of bacteria and the biosynthesis pathways of 
their pigments are directly affected by culture conditions 
and environmental parameters [24]. In this study, the 
effects of different parameters i.e., culture media, pHs, 
temperatures, incubation periods and shaking rates on 
the growth and the production of pigment by C. parietis 
AUCs were investigated. It was noticed that the high-
est production of the pigment occurred under the same 
conditions that achieved optimum growth (Fig.  6). The 
optimum growth and pigment production by C. parietis 
AUCs were achieved in nutrient broth at pH 8, 35 °C after 
72  h under 150  rpm. Many researchers have reported 
that the production of bacterial pigments is influenced by 
culture and environmental conditions [10, 16, 17].

Growth and pigment production kinetics
The growth and pigment production kinetics for C. pari-
etis AUCs were shown in Fig. 7. It was observed that pig-
ment production was associated with cell growth. The 
exponential (log) phase for C. parietis AUCs started after 
10 h of cultivation and continued up to 70 h. Then, the 

Fig.3  Thin-Layer Chromatography (TLC) of C. parietis AUCs yellow 
pigment and standard ß-carotene using acetone and n-hexane in a 
6:4 (v/v) ratio shows bands with an Rf value of 0.87. 1 is the pigment 
extract and 2 is the standard ß-carotene

Fig.4  UV–Vis spectra of C. parietis AUCs yellow pigment

Fig.5  HPLC chromatogram of C. parietis AUCs yellow pigment
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stationary phase takes about 20 h, after which the growth 
declined. The pigment production started after 30 h, and 
the highest production was gained at the end of the expo-
nential phase at 70 h.

In vitro antibacterial activity of pigment extract
As shown in Table  1 and Fig.  8, the pigment extract 
exhibited antibacterial activity against all of the tested 
pathogenic bacteria, with varying inhibition zone diam-
eters based on bacterial species. The antibacterial activi-
ties of bacterial carotenoids extracted from Micrococcus 
sp., Bacillus sp., Kocuria sp., Brevibacterium sp. and Virg-
ibacillus sp. were previously reported [16, 26, 27]. The 

Fig.6  Optimization of pigment production by C. parietis AUCs

Fig.7  Growth and pigment production kinetics of C. parietis AUCs
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ability of carotenoids to inhibit bacteria may be due to 
their ability to interact with proteins located in the outer 
membranes of bacterial cells, causing membrane dam-
age that restricts the availability of nutrients needed for 
bacterial growth and, ultimately, results in bacterial death 
[28, 29].

In vitro antioxidant activity of pigment extract
The pigment extract of C. parietis AUCs had consider-
able total antioxidant activity (3097.5 ± 5.4 µg ascorbic 
acid equivalent/mg pigment extract) and DPPH scav-
enging activity (87%). The ability of microbial extracts 
to scavenge DPPH radicals was previously documented 
by other researchers [30]. Our findings corroborated 
those of other studies, which demonstrated that the 

carotenoids from bacteria such as Kocuira marina 
DAGII, Pedobacter sp., Staphylococcus aureus, and Fon-
tibacter flavus YUAB-SR-25 showed strong antioxidant 
properties [31–33]. Carotenoids are recognized as anti-
oxidant agents due to their triplet state energy and their 
electron-rich polyene structure [34]. Carotenoids can 
scavenge reactive oxygen species (ROS) through trans-
ferring electrons, oxidation, or forming carotenoid-rad-
ical cations, as well as they can prevent the generation 
of radicals by deactivating the electronically excited 
sensitizer molecules [35, 36].

In vitro antidiabetic activity of pigment extract
One of the main strategies for managing diabetes is the 
inhibition of the activity of pancreatic α-amylase, which 
is the main enzyme involved in the breakdown of die-
tary starch into glucose [37, 38]. In the present study 
the pigment extract inhibited the activity of pancre-
atic α-amylase by 73.8%. The inhibitory effect of carot-
enoids against pancreatic α-amylase was reported by 
previous studies [39].

Despite the fact that yeast cells are different from 
human ones, glucose transport through the yeast cell 
membrane has gained attention as an in  vitro test-
ing method for antidiabetic activity [40]. Interestingly, 
the pigment extract of C. parietis AUCs increased the 
uptake of glucose by the yeast cells in a manner propor-
tional to the concentration of glucose, where the uptake 
percentage increased with glucose concentration. The 
pigment extract increased the glucose uptake percent-
age by the yeast cells by 55.32 and 71.7% at 5 mM and 
10  mM glucose concentrations, respectively. The anti-
diabetic effect of the pigment extract may be related to 
its antioxidant properties, as reported for other carot-
enoids [41, 42]. Several studies proved that carotenoids 
could lower plasma glucose levels and insulin resistance 
in humans, which consequently reduced diabetes risk 
[43]. Finally, this study sheds light on bacterial ß-car-
otene, which has proven efficacy as an antibacterial, 

Table 1  Antibacterial activity of C. parietis AUCs pigment extract

Values are the means of three replicas ± standard errors

Pathogenic bacteria Inhibition zone (mm)

Positive control (ampicillin solution, 
1 mg/mL)

Pigment extract (1 mg/mL in 
methanol)

Negative 
control 
(methanol)

Staphylococcus aureus 21 ± 1.5 19 ± 0.9 0.0 ± 0

Pseudomonas aeruginosa 18 ± 1.2 20 ± 1.5 0.0 ± 0

Klebsiella pneumonia 22 ± 1.5 17 ± 0.9 0.0 ± 0

Streptococcus agalactiae 25 ± 1.7 27 ± 1.5 0.0 ± 0

Fig.8  Antibacterial activity of C. parietis AUCs pigment extract. 1: 
Positive control (ampicillin solution, 1 mg/mL) 2: Pigment extract 
(1 mg/mL in methanol), and 3: Negative control (methanol)
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antioxidant, and antidiabetic agent, making it a promis-
ing source for biomedical applications after conducting 
in vivo studies and ensuring the safety of its use.

Conclusion
In this study, a yellow pigment was extracted from the 
endophytic bacterium Citricoccus parietis AUCs. The 
pigment was purified and characterized using TLC, 
UV/Vis spectrophotometer, and HPLC–DAD. Results 
revealed that the pigment is β-carotene. The production 
of pigment by C. parietis AUCs was optimized, and the 
biological activities of the pigment extract were evalu-
ated in  vitro. The study’s findings showed that C. pari-
etis AUCs’ pigment has strong antibacterial, antioxidant, 
and antidiabetic properties. To exploit the results of this 
study in medical and pharmaceutical applications, in vivo 
experiments must be performed in order to validate our 
findings.
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