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Abstract
Background A processing methodology of raw starch extraction from avocado seeds (ASs) and a sequential 
hydrolysis and fermentation bioprocess in just a few steps was successfully obtained for the bioethanol production 
by a single yeast Saccharomyces cerevisiae strain and this research was also to investigate the optimum conditions for 
the pretreatment of biomass and technical procedures for the production of bioethanol. It successfully resulted in 
high yields and productivity of all the experiments from the laboratory scale and the pilot plant. Ethanol yields from 
pretreated starch are comparable with those in commercial industries that use molasses and hydrolyzed starch as raw 
materials.

Results Before the pilot-scale bioethanol production, studies of starch extraction and dilute sulfuric acid-based 
pretreatment was carefully conducted. The amount of starch extracted from dry and fresh avocado seed was 
16.85 g ± 0.34 g and 29.79 ± 3.18 g of dry starch, representing a yield of ∼17% and 30%, respectively. After a dilute 
sulfuric acid pretreatment of starch, the released reducing sugars (RRS) were obtained and the hydrolysate slurries 
containing glucose (109.79 ± 1.14 g/L), xylose (0.99 ± 0.06 g/L), and arabinose (0.38 ± 0.01 g/L). The efficiency of total 
sugar conversion was 73.40%, with a productivity of 9.26 g/L/h. The ethanol fermentation in a 125 mL flask fermenter 
showed that Saccharomyces cerevisiae (Fali, active dry yeast) produced the maximum ethanol concentration, pmax 
at 49.05 g/L (6.22% v/v) with a yield coefficient, Yp/s of 0.44 gEthanol/gGlucose, a productivity or production rate, rp at 
2.01 g/L/h and an efficiency, Ef of 85.37%. The pilot scale experiments of the ethanol fermentation using the 40-L 
fermenter were also successfully achieved with essentially good results. The values of pmax,Yp/s, rp, and Ef of the 40-L 
scale were at 50.94 g/L (6.46% v/v), 0.45 gEthanol/gGlucose, 2.11 g/L/h, and 88.74%, respectively. Because of using raw 
starch, major by-products, i.e., acetic acid in the two scales were very low, in ranges of 0.88–2.45 g/L, and lactic acid 
was not produced, which are less than those values in the industries.
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Introduction
Starch is a polymer of glucose and mainly consists of 
amylose and amylopectin. It is the second most impor-
tant and abundant source of carbon and energy in a large 
variety of higher plants [1]. Starch is also a very impor-
tant feedstock and it has a big demand in the industry to 
produce many valuable products, such as maltose, glu-
cose, fructose, glucose-fructose syrups, organic acids, 
amino acids, etc. [2, 3]. Furthermore, starch is also an 
important feedstock in the fermentation industry, where 
is saccharified and fermented to produce ethanol, which 
can be employed for the production of biofuel, pota-
ble alcohols, e.g., beverages such as beer, whiskey, and 
other ethanol products [4]. The production of bioetha-
nol from starch was first introduced at the beginning of 
the twentieth century as an alternative energy source to 
replace the utilization of conventional fuels [5, 6]. Bio-
ethanol has a great advantage over conventional fuels: It 
has a higher octane rating and it is safer to use. It is also 
an eco-friendly renewable resource that contributes to 
the reduction of petroleum-based fuel emissions [6–9]. 
Nowadays, there are policies for blending 20–30% etha-
nol in gasoline in different countries by 2030. However, 
the availability of enough ethanol is still a challenge for 
this purpose, because agroindustrial residues, forest resi-
dues, etc. would also generate only a limited amount of 
bioethanol [10–12]. So, there is a need to explore the use 
of other wastes such as fruit wastes or vegetable wastes 
which are consumed at huge scales. In fact, every fruit 
generates 50% of its weight as waste after its consump-
tion, which is a huge amount and is utilized to generate 
bioethanol [13].

Bioethanol is mainly obtained from corn starch and 
sugarcane [14]. However, can also be produced from 
various kinds of feedstock such as cassava, sugar beet, 
sweet potato, wheat, rice, and sorghum. All of these 
materials are made up of starch, which depending on 
the botanical source, contains certain amounts of amy-
lose and amylopectin [4, 5, 14]. Interestingly, starch can 
also be obtained from unconventional sources such as 
avocado wastes [15]. The by-products from the avocado 
are mainly the peel (APs) and the seed (ASs), represent-
ing between 20 and 30 wt % of the fruit, which are often 
discarded or used as compost [16]. These two residues 
are rich in carbohydrates such as cellulose, hemicellulose, 
and starch and have a high potential for the production 
of value-added materials [17]. Specifically, the chemical 

composition of seed on Hass and Fuerte varieties is 
reported 2.4 and 2.5% protein, 3.5 and 2.2% sugar, 2.5 and 
3.2% neutral lipids, 12 and 13% glycolipids, 7.4 and 10.9% 
phospholipids, 0.8 and 1.0% fat, respectively [18–20]. 
Starch represents nearly 60% of the seed (dry matter 
basis), resulting in large amounts of potentially ferment-
able sugars [21–23]. Consequently, avocado seeds stand 
out as promising feedstock for applications within indus-
trial bioprocesses and the biorefinery concept for ethanol 
production and other bioproducts of commercial interest 
[22–25]. Importantly, in Mexico, Michoacan contributes 
on 75.2% (1,800,021 tons) to the national total produc-
tion, followed by Jalisco with 10.4% (248,392 tons). These 
two adjoining states concentrate 85.6% (2,048,413 tons) 
of the country’s production [26], which would be a great 
opportunity to take the avocado by-products for its 
exploitation to generate bioethanol at a low cost.

A few studies have demonstrated that using avocado 
seed wastes can be saccharified and fermented with 
bacterial strains in a laboratory, pilot scale, and semi-
industrial levels process to produce bioproducts with 
successful results [22, 25, 27–30]. In addition, for hydro-
lysis and fermentation of starch to bioethanol produc-
tion, large companies have developed novel and efficient 
enzymes for the saccharification of starch [6]. However, 
the conventional enzymatic liquefaction and saccharifica-
tion of starch have disadvantages in two main ways. First, 
they require enormous amounts of efficient water-based 
cooling systems to regulate the temperatures during fer-
mentations, thus increasing the complexity, time, and 
production costs of starch-based ethanol [31]. Second, 
inhibitory effects in enzymatic activity may occur during 
the liquefaction or saccharification stages owing to high 
concentrations of starch or glucose present that act as a 
competitive inhibitor of the process [32–34].

Alternatively, the direct hydrolysis of raw starch to 
glucose with the dilute acid pretreatment (DAP) could 
significantly simplify processing and reduces the cost of 
producing starch-based products e.g., bioethanol and 
other bioproducts [3, 23]. This process could save on 
energy costs, as well as the total capital and operational 
costs [24, 35]. Through this process, the conversion of the 
complex carbohydrate content in starch into simple sugar 
forms is achievable through hydrolysis, by adding dilute 
acid (DA) in water molecules in the non-severe condition 
of temperature to separate the chain of starch [14, 36, 37]. 
In a series of bioethanol-production steps, the simple 

Conclusions The sequential hydrolysis and fermentation process of two scales for ethanol production using the 
combination of hydrolysis by utilizing dilute sulfuric acid-based pretreatment and fermentation by a single yeast 
Saccharomyces cerevisiae strain is practicable and feasible for realistic and effective scale-up strategies of bioethanol 
production from the starch of avocado seeds.
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sugar units are highly required because the metabolism 
performed by microorganisms in the fermentation stage 
cannot be carried out with complex sugars [38]. So, the 
quality of the hydrolyzed starch is important to produce 
high ethanol concentrations. To hydrolysis these raw 
materials to sugars, diluting acid at high temperature 
is also one of the milder methods used to break down 
the complex carbohydrates [39], 90% yield of monosac-
charides would be achieved [40]. It helps primarily in 
the partial solubilization of biomass after pretreatment 
increasing the digestibility by microbial metabolism [41]. 
It is very documented that acid hydrolysis is much faster 
and cheaper compared to the enzymatic method [40–42]. 
After pretreatment of raw starch, yeast strains such as 
Saccharomyces cerevisiae, Scheffersomyces (Pichia) stipi-
tes, Kluyveromyces marxianus, Pachysolen tannophilus, 
and Candida shehatae can assimilate and ferment sug-
ars derived from hydrolysis of starch [43–45]. There are 
few reports of natural yeast strains that can yield an amy-
lolytic enzyme and simultaneously produce efficiently 
ethanol from starch [46–48]. Therefore, researchers have 
improved the expression of amylolytic enzymes by using 
genetically engineered yeasts [49–54]. However, the use 
of such yeasts is associated with regulations, increasing 
the production costs, because a genetic-control project 
using a sterilization system and special laboratory enclo-
sure is required to confine them, in order to limit the sur-
vival and their escaping and spread of the yeasts into the 
environment [55, 56]. For these microbial bioprocesses, 
the composition of the culture media is also an impor-
tant factor, because it represents the nutrient source for 
growth and the production of metabolites of commercial 
interest [57]. So, the quality and cost of the culture media 
impact the global efficiency and economy of bioprocess, 
representing a bottleneck cost is the substrate [22].

Therefore, finding not only cheap and renewable feed-
stocks but also the high availability of this starchy mate-
rial in Mexico, such as avocado residues, represents a 
field of opportunity in the industrial fermentation pro-
cess of agroindustrial residues for microbial bioprod-
ucts. So, more research and development in pilot scale 
and semi-industrial levels for starch hydrolysis by diluted 
acid and subsequent sugar fermentation to bioethanol in 
just a few steps for bioprocessing of renewable lignocel-
lulose biomass using natural yeast strains are required 
in order to render the process even more cost-effective. 
The objective of this research was to obtain a process-
ing methodology for raw starch extraction from avocado 
seeds for sequential hydrolysis and ethanol fermenta-
tion. The second objective of this study was also to obtain 
a starch hydrolysate by a dilute acid-based pretreat-
ment method for raw starch conversion to ethanol by 
fermentation using the yeast Saccharomyces cerevisiae 
without additional nutrient supply into hydrolysate, less 

time-consuming and lower operating cost at the labora-
tory scale and the 40-L pilot plant.

Materials and methods
Characterization of avocado seeds and starch extraction
The Hass-type avocado seed was provided by the SIM-
PLOT company (Morelia, Michoacan, Mexico). The 
chemical characterization of avocado seeds was per-
formed according to the procedures described by the 
National Renewable Energy Laboratory (NREL). The 
analysis included the determination of moisture content 
[58], extractives [59], structural carbohydrates and lignin 
[60], and ash [61]. For starch isolation, the extraction was 
done in triplicate, using fresh and dried avocado seeds 
separately by adapting the methodology proposed by de 
Castro and coworkers [62], with modifications. The seeds 
were washed with tap water and finally with distilled 
water before cutting them into small pieces and dried 
in an oven at 80 °C for 24 h. Dried seeds were powdered 
in a grinder type 1RF3 054-4YC31 to reduce the particle 
size by passing it through a 40-micron sieve (425 μm) and 
then were retained in a 60-mesh sieve (250 μm). For the 
starch extraction process, a sample of 100 g of powdered 
seeds was immersed in 300 mL of distilled water, then 
ground in a food processor (Oster, 6805-RG0), and finally 
filtered through a cloth sieve (cotton fabric). The suspen-
sion obtained was left to stand for 24 h to complete the 
starch sedimentation. After the supernatant was dis-
carded, the starchy pellets obtained were centrifuged at 
4,000 rpm for 10 min and dried in an oven (NOVATECH, 
Model HS35-AID) for 24 h at 60 °C, ground, and stored 
at room temperature in a hermetically sealed container 
for further treatment. The yield of starch extraction pro-
cess was calculated using Eq. (1):

 
Y ield (%) =

(
FMS

MASs

)
x100

where: FMS: Final mass starch (g); MASs: Mass of avo-
cado seeds used in the extraction (g).

Thermochemical hydrolysis of avocado starch in laboratory 
and pilot scales
In this study, a mixture of 100  g containing 15% w/w 
of starch powder of avocado seed and the balance with 
diluted acid 2% (w/w) H2SO4. The reaction of hydrolysis 
was carried out in an Erlenmeyer flask of 250 ml at 87 °C 
for 12  h at 100  rpm with a magnetic stirrer in a water 
bath using a cryothermostat (JULABO, model CORIO 
CP 200 F). The experiment was carried out in triplicate.

After the pretreatment procedure, starch hydrolysates 
were used as nutritious media to obtain bioethanol. 
Also, 1 mL aliquots of hydrolysate were centrifuged at 
13,500 rpm (Fisher Scientific, accuSpin Micro 17) and the 



Page 4 of 10Caballero-Sanchez et al. Microbial Cell Factories          (2023) 22:119 

supernatants were analyzed for glucose, xylose, and arab-
inose content using high-performance liquid chroma-
tography (HPLC). Released Reducing sugars (RRS) were 
characterized by the 3,5-dinitro salicylic acid method 
(DNS) before and after mild thermal-acid hydrolysis 
pretreatment.

Fermentation of Starch hydrolysate of avocado seeds
For fermentation on the laboratory scale, the 125 mL 
shake-flask fermenters were utilized and 100 mL of the 
raw hydrolysate was used as a cultivation medium. 0.5 g 
of lyophilized yeast Saccharomyces cerevisiae (Distila-
Max® DS strain) was hydrated in YPD medium at 35  °C 
for 30 min and directly inoculated into the starch hydro-
lysate with an initial inoculum concentration of 5  g/L. 
Fermentation conditions were: 30  °C, 50  rpm, and pH 
5.0 adjusted with the addition of 14.6% NH4OH (v/v). All 
experiments were carried out in triplicate. The scale-up 
of dilute acid-based hydrolysis of starch from avocado 
seeds for ethanol fermentation was performed from the 
125 mL shake-flask cultures until the pilot scale (PIG-
NAT, Model UPB/2000/S). The pilot plant contains a 
40-L fermenter, which has a jacket that allows tempera-
ture control with steam, as well as a variable revolution 
impeller stirrer that can stir up to 125 rpm.

In this pretreatment scale, the fermenter contained 
40 Kg of the fermentation mixture containing 15% w/w 
of starch powder of avocado seed and diluted acid 2% 
H2SO4(w/w). The mild pretreatment condition was: 87 °C 
and 30  rpm for 12  h. After hydrolysis, the pilot-scale 
ethanol fermentation was carefully conducted directly 
into the starch hydrolysate in the 40-L fermenter with an 
initial inoculum concentration of 5  g/L Saccharomyces 
cerevisiae strain. Fermentation conditions were: 30  °C, 
30 rpm, and pH 5.0 adjusted with the addition of 14.6% 
NH4OH (v/v). The pilot plant experiments were carried 
out in duplicate.

Fermentation in shake flask and pilot plant
Ethanol production kinetics were performed to deter-
mine the parameters of hydrolyzed slurries from the 
starch of avocado seeds were utilized as culture media. 
1 mL aliquots were taken over the course of 24  h. For 
each sample, the supernatant was recovered and the 

concentrations of sugars, ethanol, and acetic acid were 
determined by HPLC. The experiments were carried out 
in triplicate substrate and product analysis.

Results and discussion
Characterization of avocado seeds
The Hass-type avocado seed provided by the SIMPLOT 
Company located in Morelia, Michoacan, Mexico, was 
characterized by its potential for use as feedstock for bio-
ethanol production. The results of Hass seeds character-
ization on a dry basis (%w/w) presented in Table 1 show 
that the total carbohydrate in the seed is 58.51 g/100 g, 
which corresponds to cellulose 53.62 ± 1.72 and hemi-
cellulose 4.89 ± 0.14. This value was slightly higher than 
54.36  g/100  g compared to the published values previ-
ously reported [23, 63–65]. As carbohydrates are related 
to energy generation, this suggested that the biomass 
composition of avocado seeds dispose of enough car-
bohydrates to produce glucose as the carbon source for 
the growing microbial cells on consumption during the 
fermentation processes to produce value-added prod-
ucts such as bioethanol. The content of extractives in the 
seeds was 25.92 ± 1.31 and lignin 3.23 ± 0.63; these values 
are similar to those reported by other research groups 
(see Table 1).

Yield of starch extraction from avocado seeds and 
characterization of starch hydrolysate
As shown in Table 2, the amount of starch extracted from 
Hass avocado seed was 29.79  g of dry starch obtained 
from 100  g of sample, representing a yield of 29.79%. 
Silva et al. (2013) reported a starch yield of 11.36% with 
a difference of 18.43% from the present study [66]. Gint-
ing et al. (2015) reported a starch yield of 24.20% with 
a difference of 5.59% from the present study [67]. Lubis 
et al. (2016) reported a starch yield of 16% (60 °C) which 
differs by 13.79% from the present study [68]. Kowalski 
et al. (2017) reported a starch yield of 20.10% with a dif-
ference of 9.69% from the resent study [69]. Correa et al. 
(2019) reported a starch yield of 6.85% which differs by 
22. 94% with the presnt study [70]. Rosalia Jimenez et al. 
(2021)[15] reported a starch yield of 11.38% which dif-
fers by 18.4% from the present stud. Recently, Martins et 
al. (2022) reported a starch yield of 19.54, which differs 

Table 1 The characterization of avocado seed reported in this study and by different researchers
Composition Proximate (%) [63] [64] [65] [23]
Moisture 11.69 ± 0.04 7.02 ± 0.18 13.17 ± 0.09 ------ ------

Extractives 25.92 ± 1.31 35.95 ± 1.95 26.45 ± 2.52 20.90 21.00–35.90

Cellulose 53.62 ± 1.72 6.48 ± 0.38 13.38 ± 0.45 37.00 6.50–40.90

Hemicellulose 4.89 ± 0.14 47.88 ± 2.14 9.30 ± 0.21 3.50 3.00–47.90

Lignin 3.23 ± 0.63 1.79 ± 0.04 7.78 ± 0.98 15.30 1.80–15.80

Ash 0.41 ± 0.02 0.87 ± 0.06 2.86 ± 0.10 2.76 0.90–2.90

Total 99.76 100 ------ ------ ------
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by 7.25% from the present stud [20]. It is documented 
that factors that directly influence the yield of the starch 
extraction are extraction method, soil composition, and 
the avocado variety, which can directly affect the extrac-
tion results [20, 71]. So, the method used for the extrac-
tion of starch in the present work obtained a higher result 
and can be used for the next sequential steps of hydroly-
sis of the starch polymers to sugar units and fermentation 
for bioethanol production.

Hydrolysis of avocado seed starch
The pretreatment of raw starch was performed with 
diluted acid 2% (w/w) H2SO4 at 87 °C for 12 h. The analy-
sis of the kinetics of glucose and RRS production was 
carried out for 12 h in the 250 mL flask and fermentation 
tank of the pilot plant (Fig. 1). The results show the aver-
age of the three replicates with the standard deviation. 
During this stage of hydrolysis, a significant increase in 
the RRS and glucose concentration is observed, until the 
end of the process. As for the concentrations of xylose 
and arabinose, their maximum values are observed at 
close to 12 h of processing. This value also corresponds 
to the maximum concentration of xylose reached during 
the entire hydrolysis process. The maximum concentra-
tion of RRS at laboratory and pilot scales were glucose 
(109.79 ± 1.14  g/L and 109.86  g/L, respectively), xylose 
(0.99 ± 0.06 g/L and 1.87 g/L, respectively), and arabinose 

(0.38 ± 0.01 g/L and 0.30 g/L, respectively). Therefore, this 
bioprocess can be technically quite easily feasible to scale 
up from 125 mL shake flasks to a 40-L pilot plant, reach-
ing similar yields in both operational scales for ferment-
able sugars production.

Ethanol fermentation by Saccharomyces cerevisiae at 
laboratory scale
Studies on ethanol production at 30 oC on a laboratory 
scale (125 mL Erlenmeyer flasks) using 100 mL of the 
starch hydrolysate without additional nutrient supply 
into hydrolysate were conducted under optimized fer-
mentation conditions (The initial glucose concentration 
of 112.44 g/L, the initial inoculation size of 0.5% w/v, 30 
oC, and 50  rpm). Results presented in Fig.  2, show the 
average of the three replicates with the standard devia-
tion, the fermentation development was also adjusted 
according to the desired condition at the pilot scale, a 
24  h fermentation step. For that, hydrated yeast in the 
YPD medium had to be directly added at the beginning 
of fermentation, providing an initial concentration of 5 g 
cells/L on a dry basis. Figure 2 shows also that the etha-
nol concentration increases slightly over approximately 
the first 20  h of the fermentation process, reaching the 
maximum value of 49.05 g/L, and then levels off, with a 
yield coefficient, Yp/s of 0.44 gEthanol/gGlucose, a productiv-
ity or production rate, rp at 2.01 g/L/h and an efficiency, 
Ef of 85.37%. The glucose degradation increased with 
fermentation time, and it was almost completely utilized 
after 20  h of fermentation. The exponential phase for 
sugar consumption was between 4 and 16 h. As expected, 
xylose and arabinose were not consumed during the fer-
mentation and the acetic acid concentration was very 
low, reaching the value of 0.88  g/L. The results showed 
that the raw hydrolysate of starch from avocado seeds 
provided sufficient sugars to be fermented to ethanol 
without requiring additional supply nutrients and with-
out producing inhibitory compounds such as furans.

Ethanol fermentation by Saccharomyces cerevisiae at pilot 
scale
The main goal of this scaling-up bioprocess is to check if 
the fermentation yield is maintained with the possibility, 

Table 2 The starch yield from avocado seed reported by different researchers
Entry Reference Year Starch yield (%) % of difference
1 This work 2023 29.79 -----

2 Martins et al. [20] 2022 19.54 7.25

3 Jimenez et al. [15] 2021 11.38 18.41

4 Correa et al. [70] 2019 6.88 22.91

5 Kowalski et al. [69] 2017 20.10 9.69

6 Lubis et al. [68] 2016 16.00 13.79

7 Ginting et al. [67] 2015 24.20 5.59

8 Silva et al. [66] 2013 11.36 18.43

Fig. 1 Effect of time on the release of reducing sugars from starch from 
avocado seed at laboratory and pilot scale
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in the future, to be semi-industrializing bioethanol pro-
duction using avocado wastes-derived fermentable 
sugars, the same parameters have been tested during 
ethanol fermentations carried out on a pilot scale (40 L). 
As shown in Fig.  3, the kinetics of yeast growth during 
fermentation in a pilot plant is very similar to occurred in 
laboratory-scale fermentations. The ethanol production 
and reduced sugar consumption for the two scales can 
be observed in Figs. 2 and 3. Small differences observed 
between fermentations were carried out in flasks and 
pilot plant, which may be due to differences in the agi-
tation power and geometry of each system [72–74]. In 
fermentations carried out in the pilot plant, glucose was 
almost completely consumed at around 16  h and maxi-
mum ethanol concentration was also achieved at the 
same time. In the pilot case, ethanol fermentation fin-
ished around 24  h. As expected, the process was faster, 
since cell concentrations were a little bit higher as previ-
ously observed [74]. The values of pmax,Yp/s, rp, and effi-
ciency of the 40-L scale were at 50.94  g/L (6.46% v/v), 
0.45gEthanol/gGlucose 2.11  g/L/h and 88.74%, respectively. 

Because of using raw starch, major by-products, i.e., ace-
tic acid in the two scales were very low, in ranges of 0.88–
2.45 g/L, and lactic acid was not produced, which is less 
than those values in the industries. The exponential phase 
for sugar consumption was also between 4 and 16 h. As 
expected, xylose and arabinose were also not consumed 
during the fermentation. As in laboratory fermentation 
assays, the results in the pilot-scale batch fermentation 
also showed that the raw hydrolysate of starch from avo-
cado seeds provided sufficient sugars to be fermented 
to ethanol without requiring additional supply nutrients 
and without producing inhibitory compounds such as 
furfural and 5-hydroxymethyl furfural, after hydrolysis of 
starch from avocado seeds. As result, these hydrolysates 
can be further used for large-scale hydrolysis using other 
microorganisms for the production of commercial bio-
products (Fig. 4).

Fig. 2 Fermentation kinetics of glucose obtained from the dilute acid pretreatment by Saccharomyces cerevisiae at laboratory scale
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Conclusion
A sequential hydrolysis and fermentation process of two 
scales for the ethanol production process from the starch 
of avocado seeds was conducted in this study (Fig.  4). 
Laboratory assays and pilot-plant studies demonstrated 

that ethanol fermentation from the starch hydrolysate 
with an initial concentration of glucose 112.44 ± 1.14 g/L 
was successful. The results of the present study also 
demonstrated that starch hydrolysate rich in glucose 
units can be fermented to ethanol without requiring 

Fig. 4 Flow diagram of the bioethanol production process under the proposed operating conditions (pilot scale). The proportion of ASs to water in the 
extraction starch was set at 1:3 (w/v) with a yield of 29.79%; acid hydrolysis efficiency was 86.38% at 87 °C and 12 h; the kinetic parameters of glucose 
fermentation to ethanol were: pmax = 50.94 g/L (6.46% v/v), Yp/s= 0.45 gEthanol/gGlucose, rp= 2.11 g/L/h, and Ef = 88.74% at 30 °C and 24 h

 

Fig. 3 Fermentation kinetics of glucose obtained from the dilute acid pretreatment by Saccharomyces cerevisiae at pilot scale
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an additional supply of nutrients into pretreated slur-
ries. The significance of this work is that it includes the 
use of cheap chemicals for starch extraction and hydro-
lysis methods and the use of a natural Saccharomyces 
cerevisiae strain, which in turn makes the bioprocess of 
production of ethanol cost-effective. Furthermore, the 
laboratory process was technically quite easily feasible to 
scale up to a pilot scale with promising results. From the 
results, it could be concluded that the starch of avocado 
seeds is an attractive raw material for the production of 
bioethanol and can also be used for large-scale hydrolysis 
using other microorganisms for the production of other 
commercial bioproducts.
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