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Abstract
Background  The 5´ untranslated region (5´ UTR) plays a key role in regulating translation efficiency and mRNA 
stability, making it a favored target in genetic engineering and synthetic biology. A common feature found in the 
5´ UTR is the poly-adenine (poly(A)) tract. However, the effect of 5´ UTR poly(A) on protein production remains 
controversial. Machine-learning models are powerful tools for explaining the complex contributions of features, but 
models incorporating features of 5´ UTR poly(A) are currently lacking. Thus, our goal is to construct such a model, 
using natural 5´ UTRs from Kluyveromyces marxianus, a promising cell factory for producing heterologous proteins.

Results  We constructed a mini-library consisting of 207 5´ UTRs harboring poly(A) and 34 5´ UTRs without poly(A) 
from K. marxianus. The effects of each 5´ UTR on the production of a GFP reporter were evaluated individually in vivo, 
and the resulting protein abundance spanned an approximately 450-fold range throughout. The data were used to 
train a multi-layer perceptron neural network (MLP-NN) model that incorporated the length and position of poly(A) 
as features. The model exhibited good performance in predicting protein abundance (average R2 = 0.7290). The 
model suggests that the length of poly(A) is negatively correlated with protein production, whereas poly(A) located 
between 10 and 30 nt upstream of the start codon (AUG) exhibits a weak positive effect on protein abundance. Using 
the model as guidance, the deletion or reduction of poly(A) upstream of 30 nt preceding AUG tended to improve 
the production of GFP and a feruloyl esterase. Deletions of poly(A) showed inconsistent effects on mRNA levels, 
suggesting that poly(A) represses protein production either with or without reducing mRNA levels.

Conclusion  The effects of poly(A) on protein production depend on its length and position. Integrating poly(A) 
features into machine-learning models improves simulation accuracy. Deleting or reducing poly(A) upstream of 30 nt 
preceding AUG tends to enhance protein production. This optimization strategy can be applied to enhance the yield 
of K. marxianus and other microbial cell factories.
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Introduction
The 5´ untranslated region (5´ UTR) is the segment of an 
mRNA that spans from the 5´ end to the position of the 
start codon (AUG). The 5´ UTR plays key roles in post-
transcriptional regulation without altering the protein 
sequence, making it a favored target in genetic engineer-
ing and synthetic biology [1, 2]. The effects of the 5´ UTR 
on protein production are mediated by the multiple cis-
regulatory elements it carries, including the 5´-cap struc-
ture [3], the translation initiation context [4, 5], upstream 
AUGs and upstream ORFs [6–8], internal ribosome entry 
sites  (IRES) [9, 10], nucleotide preferences at positions 
immediately upstream of AUG [11, 12], secondary struc-
tures [13, 14], and G-quadruplexes [15]. These elements 
primarily regulate translation efficiency and mRNA 
stability.

Poly-adenine (poly(A)) tract is a common feature in the 
5´ UTR. Approximately 28% of genes in Saccharomyces 
cerevisiae, 48% of genes in Arabidopsis thaliana, 39% of 
genes in Drosophila melanogaster, 9% of genes in mice, 
and 11% of genes in humans contain at least one poly(A) 
longer than 5 nt in the 5´ UTR [16]. Unlike the poly(A) 
tail added at the 3´ end of mRNA, the sequence encod-
ing 5´ UTR poly(A) is embedded in the primary gene 
sequence and transcribed as part of the mature mRNA. 
The frequency of continuous poly(A)n occurring is (1/4)n. 
Therefore, the occurrence of 5´ UTR poly(A) is not due 
to random base combinations but is linked to the func-
tion of the 5´ UTR.

The effect of 5´ UTR poly(A) on gene expression 
remains controversial in different circumstances. 5´ UTR 
poly(A) forms IRES for cap-independent translation of 
invasive growth genes in S. cerevisiae [17], genes related 
to pattern-triggered immunity in Arabidopsis plants [18], 
and GFP and Luc reporter genes in vitro [19, 20]. In a 
study utilizing a synthetic mRNA library containing over 
one million 5´ UTR variants, poly(A) was found to enable 
cap-independent translation in mammalian cells but 
destabilize mRNAs in the absence of translation in vitro 
[21]. The repression of translation by 5´ UTR poly(A) was 
also observed in the auto-regulation of PABP1 (Poly(A) 
binding protein 1) in mammalian cells [22], and S. cere-
visiae [23]. The conflicting roles of 5´ UTR poly(A) might 
be related to its length. A bioinformatic analysis sug-
gests that poly(A) shorter than 12 nt is correlated with 
improved translation efficiency, while poly(A) longer 
than 12 nt results in translation repression [24].

Constructing a machine learning model is a promising 
approach to explaining the complicated roles of 5´ UTR 
poly(A) in protein production. Several models of the 5´ 
UTR were constructed using different machine learning 
strategies, such as partial least squares (PLS) regression 
[25, 26], random forest [14, 27], support vector machine 
(SVM) [27], convolutional neural network (CNN) [6, 7, 

28, 29], and transformer [30]. These models were suc-
cessfully applied to predict the protein production driven 
by the 5´ UTR and to reveal the contribution of 5´ UTR 
elements to the protein production. To exclude back-
ground interference, the construction of a model requires 
building a randomly or deliberately designed 5´ UTR 
library that drives the expression of the same reporter 
gene. However, a similar analysis has not been performed 
using natural 5´ UTRs containing poly(A), which poses 
an obstacle to incorporating poly(A) as a novel feature 
into the machine learning model.

Kluyveromyces marxianus is an unconventional bud-
ding yeast species. Due to its long-standing safe associa-
tion with human food, such as dairy products, grapes, 
and papaya, K. marxianus has been granted GRAS (Gen-
erally Regarded As Safe) and QPS (Qualified Presump-
tion of Safety) status in the United States and Europe, 
respectively [31]. Besides its safety, K. marxianus pos-
sesses several features beneficial for industrial applica-
tions, including fast growth, thermotolerance, a broad 
spectrum of utilizable carbon sources, and a high capac-
ity for secretion. Therefore, K. marxianus is a promis-
ing microbial cell factory for producing heterologous 
proteins, biofuels, and various chemicals [32, 33]. In 
K. marxianus, the deletion of a poly(A) tract inside the 
INU1 5´ UTR increased downstream protein production 
[34], while abolishing the poly(A) in the LAC4 5´ UTR 
reduced the leaky expression under glucose repression 
[35]. These results indicate that 5´ UTR poly(A) plays 
an important role in regulating protein production in K. 
marxianus.

In this study, we constructed a mini-library compris-
ing 207 natural 5´ UTRs harboring poly(A) along with 
34 5´ UTRs without poly(A). All the 5´ UTRs are from 
K. marxianus. The effect of each 5´ UTR on protein pro-
duction was evaluated separately in vivo using a dual 
fluorescent reporter system. The obtained data were used 
to construct a multi-layer perceptron neural network 
(MLP-NN) model, in which poly(A) features were incor-
porated. The model demonstrated good performance in 
predicting protein abundance. The model suggests that 
the length of poly(A) is generally negatively correlated 
with protein production, while poly(A)s with a distance 
to AUG between 10 ~ 30 nt exhibit a weak correlation 
with improved protein production. Consistent with the 
model’s predictions, the deletions of poly(A)s upstream 
of 30 nt preceding AUG tended to enhance protein pro-
duction, which was validated through the expression 
analysis of GFP and a feruloyl esterase (AnFaeA). These 
results suggest that incorporating poly(A) features into 
machine-learning models can enhance the accuracy of 
the prediction. The optimized strategy of the 5´ UTR 
proposed here could be applied to improve the yield of K. 
marxianus and other microbial cell factories.
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Materials and methods
Strains and plasmids
K. marxianus strain, Fim-1ΔU [34], was used as a 
wild-type strain in this study. All plasmids used in this 
study are listed in Additional file 2: Table S1. All the 
primers used are listed in Additional file 2: Table S2. 
HXT4 promoter (1351  bp) and 5´ UTR (149  bp) were 
inserted into an Xho I site immediately preceding the 
open reading frame (ORF) of GFP in LHZ676 [36], 
to obtain LHZ1137. The HXT4 5´ UTR of LHZ1137 
was replaced by an Xho I site to obtain LHZ1138. Dif-
ferent natural 5´ UTRs were amplified using primers 
OZJY1F/R ~ OZJY240F/R and then inserted into the 
Xho I site of LHZ1138 by Gibson-assembly, resulting 
in the generation of LHZ1139 ~ LHZ1378. Mutations 
within 5´ UTRs were introduced by mutagenesis PCR 
using primers OZJY241F/R to OZJY302F/R, result-
ing in the generation of LHZ1379 ~ LHZ1440. The cas-
sette of PINU1-SSINU1-Est1E-His6-TINU1 of pZP32 [34], 
was replaced by a cassette of HXT4 promoter-Sma I- 
SSINU1−P10L- AnFaeA-INU1 terminator. The SSINU1−P10L 
coding an INU1 signal peptide with a P10L mutation was 
amplified from pZP33 [34], and the ORF of AnFaeA was 
amplified from LHZ766 [37]. The resulting plasmid was 
named LHZ1441. The wild-type and mutant 5´ UTRs 
of SSH4, INU1 and KLMA_80280 were amplified from 
LHZ1182, LHZ1438, LHZ1164, LHZ1419, LHZ1158 
and LHZ1439. Amplified 5´ UTRs were inserted into the 
Sma I site of LHZ1441 to obtain LHZ1442 ~ LHZ1447. 
The ORF of Est1E in pZP28 [34], was replaced by the 
ORF of AnFaeA amplified from LHZ733 [37], resulting 
in LHZ1448. Poly(A) inside INU1 5´ UTR in LHZ1448 
was mutated by mutagenesis PCR using primers 
OZJY307F/R ~ OZJY320F/R, resulting in the generation 
of LHZ1449 ~ LHZ1462. The sequences of three back-
bone plasmids, LHZ1138, LHZ1441 and LHZ1448, are 
listed in Additional file 2: Table. S3.

Nanopore RNAseq
Three parallel cultures were grown in YPD (2% w/v glu-
cose, 2% w/v peptone; 1% w/v yeast extract) at 30 degrees 
for 16 h or 72 h. Cells were collected and total RNA was 
extracted by using ZR Fungal/Bacterial RNA MiniPrep 
(Zymo Research, R2014). RNA was subjected to Nano-
pore sequencing at Biomarker Technologies Inc.(Bei-
jing, China). After low-quality reads (length < 500  bp, Q 
score < 7) were filtered out, 6.5 ~ 8.5  million clean reads 
were obtained for each sample. The reads were mapped 
to the FIM-1 reference genome [38], using minimap2, 
with more than 95% of the reads successfully mapped 
for each sample. Redundancy was conducted for each 
sample by filtering sequences with an identity below 
0.9 and coverage below 0.85. Alignments showing dif-
ferences only at the 5´ end were merged to obtain a gff 

file for each sample. By comparing these files with the 
FIM-1 reference gff annotation file using bedtools, addi-
tional sequences in transcriptions relative to the 5´ end 
of corresponding coding sequences (CDS) were extracted 
as the 5´ UTRs and matched to their corresponding 
genes. A gene may have multiple 5´ UTRs due to differ-
ences in transcription start sites and data processing. We 
identified the most frequent 5´ UTR(s) for each gene. 
In cases where multiple 5´ UTRs shared the same high-
est frequency, we selected the longest one. Transcripts 
per million (TPM) value was used as a measure of gene 
expression level [39], and was calculated for each gene 
in each sample. Sequences of 5´ UTRs are listed in Addi-
tional file 3 and TPM values of each gene are listed in 
Additional file 4.

Proteomics analysis
Cells were collected as described in nanopore RNA-
seq. Cells were resuspended in 8 M guanidine HCl, 100 
mM Tris HCl (pH 8.0) and then lysed by glass beads in a 
FastPrep-24 5G instrument (MP Biomedicals, USA). The 
supernatant was collected after centrifugation and sub-
jected to the FASP digestion in Microcon PL-10 filters as 
described previously [40]. Nano LC-MS/MS analysis was 
performed using an EASY-nLC 1200 system (Thermo 
Fisher Scientific, USA) coupled to an Orbitrap Fusion 
Lumos mass spectrometer (Thermo Fisher Scientific, 
USA). A one-column system was adopted for all analyses. 
Samples were analyzed on a homemade C18 analytical 
column (75 μm i.d. × 25 cm, ReproSil-Pur 120 C18-AQ, 
1.9 μm (Dr. Maisch GmbH, Germany)) [41]. The results 
were processed with the UniProt K. marxianus protein 
database (4926 entries, downloaded in 10/27/2020) and 
using the Mascot (version 2.7.0, Matrix Science) [42]. The 
mass tolerances were 10 ppm for precursor and fragment 
mass tolerance of 0.05 Da. Up to two missed cleavages 
were allowed. The carbamidomethylation on cysteine was 
set as a fixed modification, and acetylation on the pro-
tein N-terminal and oxidation on methionine as variable 
modifications. The significance threshold was p < 0.05, 
and the minimum number of significant unique sequence 
was 1. The exponentially modified protein abundance 
index (emPAI) was found to be approximately propor-
tional to the logarithm of protein concentration [43], and 
was used for intra-sample comparison of protein abun-
dance [44–48]. The emPAI values were calculated for all 
proteins and listed in Additional file 5.

Calculation of relative entropy
The relative entropy was used to describe the enrichment 
and depletion of the base at a specific position [12, 25]. 
In a given sequence set, the relative entropy of base k at 
position i is denoted as Eset[i,k], which is calculated as 
follows:
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Eset[i,k] = Pset[i,k] × log2

(
Pset[i,k]

Pback[i,k]

)

Pset[i,k] means the probability of the base k  at the posi-
tion i  in the sequence set  of interest. Pback[i,k] means the 
probability of the base k  at the position i  in the back-
ground set, which comprises all other sequences that are 
not included in the set of interest. In the graph, Eset[i,k] 
is visualized as the height of the logo of base k  (A, C, G, 
or U), where over-representation and under-representa-
tion are indicated by positive and negative Eset[i,k] values, 
respectively.

Construction of mini-library and flow cytometry analysis
First, 5´ UTRs with a length of less than 200 nt were 
selected. Next, 5´ UTRs of genes that ranked in the top 
20% based on their values of TPM, emPAI or emPAI/
TPM, were selected. Then, 207 5´ UTR containing 
poly(A) (n ≥ 5) were randomly selected. As controls, 34 
5´ UTRs without poly(A) were selected. The length of 
the longest continuous A tracts (n < 5) inside these 34 
5´ UTRs was evenly distributed. A total of 241 5´ UTR 
were selected and cloned into LHZ1138 separately to 
construct the mini-library containing LHZ1137 and 
LHZ1139 ~ LHZ1378. Plasmids were transformed into 
Fim-1ΔU separately and transformants were selected on 
Synthetic dropout media without uracil (SC-Ura) plates 
[49]. Transformants were grown in 50 mL SC-Ura liquid 
medium for 72 h. Cells were washed and resuspended in 
50 mM Tris-HCl (pH 7.0). A total of 100,000 cells were 
subjected to fluorescence-activated cell sorting (FACS) 
by gallios flow cytometer (Beckman Coulter, USA) and 
data were analyzed by Flowjo 2.0. The relative protein 
abundance of GFP was evaluated as the ratio of the aver-
age fluorescence intensity of GFP to that of mCherry. 
The experiment was performed with three biological 
replicates.

Training and testing of models
For machine learning, a total of 15 features were 
extracted from each of 241 5´ UTR, in which 12 features 
were described previously [12]. Three additional fea-
tures included the length of the 5´ UTR (5´ UTR length), 
the length of the longest poly(A) in 5´ UTR (poly(A) 
length), and the distance between the longest poly(A) 
tract and AUG (poly(A) position). The minimum free 
energy (MFE) of the entire 5´ UTR along with the first 
50 nt in the ORF was calculated using RNAStructure 
[50]. Models were trained based on MLP-NN using a 
dataset comprising feature values of 241 5´ UTRs from 
the mini library, as well as the corresponding relative 
GFP abundance caused by these 5´ UTRs. The dataset 
was shown in Additional file 6. Among 241 5´ UTRs, 
193 (80%) 5´ UTRs were selected to form the training 

set, and the other 20% were withheld for the test set. To 
optimize the hyperparameters of the MLP-NN model, 
the training set was then divided into 5 subsets for a 
5-fold cross-validation. We investigated combinations of 
hyperparameters, including the number of dense layers 
and the number of units per layer. Upon reviewing the 
results, we opted for a setup consisting of 3 dense layers, 
each housing 300 units. The activation functions of layers 
were default (relu). The independent test set was used to 
evaluate the prediction accuracy of the model. The coef-
ficient of determination (R2) was calculated to represent 
the prediction capability of the model. All model training 
and prediction processes were performed in Python 3.8 
using TensorFlow 2.12.0. Python codes were available at 
https://github.com/CODdown/2023--MLP-NN.

Sensitivity analysis of MLP-NN mode
The sensitivity analysis of the MLP-NN model was per-
formed using Shapley Additive Explanation (SHAP), 
which illustrates the potential influence of features 
attributed to the model [51]. SHAP sensitivity analy-
sis was performed in Python 3.8 using shap 0.41.0. 
Python codes were available at https://github.com/
CODdown/2023--MLP-NN.

Enzymatic assay of AnFaeA
LHZ1442 ~ LHZ1447 and LHZ1449 ~ LHZ1462 were 
transformed into Fim-1ΔU separately, and transfor-
mants were selected on SC-Ura plates. Transformants 
were grown for 72 h in SC-Ura + Glutamate medium, in 
which (NH4)2SO4 was replaced by 0.1% glutamate since 
(NH4)2SO4 inhibits the activity of AnFaeA. Superna-
tants were subjected to an enzymatic assay of AnFaeA as 
described previously [34]. The assay was performed with 
three biological replicates.

Real-time PCR
Transformants were grown in SC-Ura liquid medium or 
SC-Ura + Glutamate liquid medium for 72  h. Cells were 
harvested and the total RNA was extracted as described 
in nanopore RNAseq. RNA was reverse transcribed using 
HiScript III All-in-one RT SuperMix Perfect for qPCR 
(Vazyme, R333-01), and cDNA was subjected to real-
time PCR using ChamQ Universal SYBR qPCR Mas-
ter Mix (Vazyme, Q711-02). The mRNA level of SWC4 
served as a control. The experiment was performed 
with three biological replicates. The real-time PCR data 
were analyzed following the 2−ΔΔCt method. The relative 
mRNA level of the target gene was calculated using the 
following equation:

	 relative mRNA leveltarget = 2−(Cttarget−CtSWC4)

https://github.com/CODdown/2023--MLP-NN
https://github.com/CODdown/2023--MLP-NN
https://github.com/CODdown/2023--MLP-NN
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where the Cttarget  is the cycle threshold of the target gene 
(GFP or AnFaeA) and the CtSWC4 is the cycle threshold 
of a housekeeper gene SWC4.

Results
5´ UTR poly(A)s are linked with mRNA levels and protein 
abundance in K. marxianus
To characterize the function of 5´ UTR poly(A) in K. 
marxianus, we collected cultures of K. marxianus after 
16  h and 72  h for nanopore RNAseq and proteomics 
analysis. The time points of 16 h and 72 h mark crucial 
stages during fermentation. At 16 h, K. marxianus enters 
the late-exponential stage, and the culture is collected as 
seed culture for feed-batch fermentation [34]. After 72 h, 
K. marxianus enters the stationary phase. At this stage, 
fermentation is manually halted, and the culture is col-
lected for expression analysis [34, 52]. Among the various 
5´ UTRs of each gene, we selected the most frequently 
occurring 5´ UTR after redundancy for analysis. If there 
are multiple 5´ UTRs with the highest frequency, the lon-
gest one was chosen. As shown in Fig. 1A, the 5´ UTRs 
at both time points shared a similar length distribution, 
with a median length of 100 nt and an enriched peak at 
50 nt. The median length of the 5´ UTR in K. marxianus 
was longer than that in S. cerevisiae (~ 50nt ) [53], sug-
gesting a different mechanism to control 5´ UTR length 
among these two species. In this study, continuous ade-
nine tracts equal to or longer than 5 nt within the 5´ UTR 
were designated as 5´ UTR poly(A)s. At both time points, 
around 25% of genes in K. marxianus harbored at least 
one 5´ UTR poly(A), a ratio comparable to that of S. cere-
visiae [16]. The 5´ UTRs containing poly(A) were signifi-
cantly longer than those without poly(A), suggesting that 
there is a higher occurrence of poly(A) in long 5´ UTRs 
(Fig. 1B). As the length of poly(A) increased, the number 
of 5´ UTRs containing such poly(A) decreased (Fig. 1C). 
The longest poly(A)s, composed of 23 As, were found in 
the 5´ UTRs of NOP15 and PFK27. The median distance 
between the poly(A) and AUG was 76 nt and 86 nt for 
16 h and 72 h, respectively, with peaks around 20 nt. In 
general, the 5´ UTRs and their poly(A) tracts shared sim-
ilar characteristics at 16 h and 72 h, indicating a consis-
tent regulation of the 5´ UTRs at both time points.

Given the frequent presence of poly(A) close to AUG, 
we calculated the enrichment and depletion of four bases 
between 30 nt preceding AUG (-30) and 10 nt after AUG 
(+ 10) in genes ranked by the abundance of encoded pro-
teins. The emPAI exhibits a linear correlation with the 
logarithm of protein concentration [43]. For the 46 pro-
teins in mouse whole cell lysate, the average deviation 
percentages of emPAI-based abundances from the actual 
values were within 63% [43]. Abundances of 40 pro-
teins in Escherichia coli cytosol measured by the emPAI 
method correlated well with those determined through 

isotope dilution of a control lysate (R2 = 0.84) [54]. Addi-
tionally, emPAI-based protein concentration is automati-
cally available for all proteins identified by MS without 
any additional experimental setup. Given these advan-
tages, emPAI was employed in this study to indicate 
protein abundance. In the region around AUG, a Kozak 
sequence (A A/C A A/C A (AUG) U C/U C) was enriched 
in the top 20% of genes (Fig. 1E, upper panel). The Kozak 
sequence of K. marxianus closely resembled that of S. 
cerevisiae, indicating the reliability of our analysis [11, 
55]. Regarding the upstream sequence, residue A was 
favored, but G and U were loathed within 30 nt preceding 
AUG in the top 20% of genes, ranked by the abundance 
of proteins encoded by genes (Fig. 1E, upper panel). The 
opposite trend was observed in the bottom 20% of genes 
(Fig.  1E, lower panel). Notably, the favored As in this 
region tended to cluster together to form poly(A) tracts 
around 20 nt preceding AUG, consistent with the peaks 
of poly(A) distribution shown in Fig.  1D. A similar pat-
tern was observed in genes ranked by mRNA levels, as 
residue A was favored and tended to cluster around 20 nt 
before the AUG codon in the top 20% of genes (Fig. 1F, 
upper panel). In contrast, we did not observe any enrich-
ment of poly(A) tracts between 100 ~ 30 nt preceding 
AUG in top 20% of genes ranked by either protein abun-
dance or mRNA levels (Additional file 1: Fig S1).

To further identify the link between poly(A) tracts 
and protein abundance, we calculated the percentage 
of genes containing 5´ UTR poly(A) in groups of genes 
distinguished by a ratio between protein abundance and 
mRNA levels. This ratio served as a rough indicator of 
translation efficiency. Regarding the 5´ UTR poly(A) 
located within 30 nt preceding AUG, the percentage of 
genes containing this 5´ UTR poly(A) was positively cor-
related with the protein/mRNA ratio (Fig. 1G), suggesting 
that poly(A)s located close to AUG increase translation 
efficiency. However, the percentage of genes containing 
5´ UTR poly(A) at any position was negatively correlated 
with the protein/mRNA ratio (Fig.  1H), suggesting that 
5´ UTR poly(A)s generally inhibit translation. Consistent 
results were obtained when analyzing the relationship 
between poly(A) and protein/mRNA ratio in ungrouped 
genes. The average protein/mRNA ratio in genes with 5´ 
UTR poly(A) was significantly lower than that in genes 
without 5´ UTR poly(A) (Additional file 1: Fig S2A). The 
average protein/mRNA ratio in genes containing 5´ UTR 
poly(A) located within 30 nt preceding AUG was sig-
nificantly higher than that in genes lacking this 5´ UTR 
poly(A) (Additional file 1: Fig S2B). The contradictory 
results between total poly(A) and poly(A) close to AUG 
suggest that the effect of poly(A) on protein production is 
position-dependent.
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Evaluate effects of 5´ UTR poly(A)s on protein production 
by a dual-reporter system
Evaluating the effects of 5´ UTR poly(A) on protein pro-
duction based on transcriptomic and proteomic data 
was interfered with by gene context, including the pro-
moter, ORF, and terminator. To reduce this interference, 

we constructed a dual-reporter system (Fig.  2A). We 
screened for natural 5´ UTRs with high abundance and 
a length of less than 200 nt. Among these 5´ UTRs, we 
selected a total of 207 5´ UTRs containing poly(A) as 
well as 34 5´ UTRs without poly(A) as controls. Each 5´ 
UTR was then cloned separately into LHZ1138 between 

Fig. 1  5´ UTR poly(A)s are linked with mRNA levels and protein abundance. (A) Distributions of 5´ UTR lengths in the K. marxianus. Cells were collected 
after 16 h and 72 h of growth, and subjected to the nanopore sequencing. A total of 4228 5´ UTRs from the 16 h sample and 4210 5´ UTRs from the 
72 h sample were analyzed. A peak around 50 nt was indicated. (B) Number and length distributions of 5´ UTRs with or without poly(A) in 16 h and 72 h 
samples. The significance was assessed by a two-tails t-test. **** p < 0.0001. (C) Number of 5´ UTR containing poly(A) of various lengths. (D) Distribution 
of distance between 5´ UTR poly(A) and start codon (AUG). A peak around 20 nt was indicated. (E, F) Enrichment and depletion of four bases between 
30 nt preceding and 7 nt after AUG (-30 ~ + 10) in different groups of genes. The genes were grouped based on the abundance of the encoded proteins 
(E) or the mRNA levels (F). The significance was assessed using a two-tailed Fisher’s exact test. Red or blue logos represented p < 0.05, while gray logos 
represented p > 0.05. (G, H) Correlation between the percentage of genes containing 5´ UTR poly(A) and the genes grouped by the ratio between protein 
abundance and mRNA level. Protein abundance and mRNA level were represented by emPAI and TPM values, respectively. The genes containing 5´ UTR 
poly(A) located within 30 nt preceding AUG were shown on the left (G), while those containing 5´ UTR poly(A) at any position were shown on the right (H)
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a strong HXT4 promoter and the ORF of GFP, with the 
vector containing a centromeric sequence (ARS1) to 
maintain a single copy in vivo and a cassette to express 
mCherry constitutively. The constructed plasmids were 
transformed into K. marxianus, cultured separately, and 
subjected to FACS. The abundance of GFP was normal-
ized by the amount of mCherry.

A total of 241 5´ UTRs resulted in a broad range of 
relative GFP abundance (Fig. 2B). Compared to the natu-
ral 5´ UTR of HXT4, the lowest relative GFP abundance 
caused by the 5´ UTR of SPP381 was 0.004 (Fig.  2B, 
insert). Despite mRNA and protein levels of SPP381 
being abundant, the low relative GFP abundance caused 
by its 5´ UTR indicates that the strong effect of gene con-
text bypasses the effect of 5´ UTR. In contrast, the high-
est relative abundance caused by 5´ UTR of NCB2 was 
1.76 (Fig. 2B, insert). The relative GFP abundance caused 
by 5´ UTRs spanned an approximately 450-fold range, 

indicating the great potential of 5´ UTRs in regulating 
the production of proteins.

The mean relative abundance caused by 5´ UTRs that 
contain poly(A) within 30 nt preceding AUG was sig-
nificantly higher than those contain poly(A) beyond 30 
nt (p < 0.0001) (Fig.  2C). The result suggest the effect of 
5´ UTR poly(A) on protein production varies depending 
on its position around − 30 nt, which was consistent with 
data in Fig. 1G. Meanwhile, the mean relative abundance 
of 5´ UTRs that contain poly(A) beyond 30 nt was slightly 
lower than that of 5´ UTRs without poly(A) (p = 0.0556), 
suggesting poly(A)s located distantly to AUG show nega-
tive effects on protein production. 5´ UTRs without 
poly(A) did not show a significant difference compared to 
5´ UTRs with poly(A) smaller than 30 nt.

Fig. 2  Evaluation of 5´ UTR poly(A)s through a dual-reporter system. (A) Flow chart of the dual-reporter system used to evaluate the effect of 5´ UTRs 
on protein production. Natural 5´ UTRs from abundant genes were randomly selected and cloned into separate vectors. The constructed plasmids were 
then transformed into K. marxianus, and the hosts were cultured separately for 72 h before FACS analysis. (B) Relative GFP abundance caused by 5´ UTRs. 
The relative GFP abundance was calculated as GFP/mCherry, where the relative GFP abundance caused by HXT4 5´ UTR was designated as 1. The mean 
relative GFP abundance of each 5´ UTR was ranked in ascending order, with the standard deviations (SD) shown (n = 3). The insert displayed 5´ UTRs that 
caused the lowest and highest relative GFP abundance. (C) Comparison of the relative GFP abundance caused by 5´ UTRs with poly(A) located at different 
positions. The significance was assessed using a two-tailed t-test. ****p < 0.0001; ns, p > 0.05
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Machine-learning model reveals the negative and 
position-dependent effect of 5´ UTR poly(A) on protein 
production
The data obtained through the dual-reporter system 
was used to train a predictive model of 5´ UTR, which 
included the twelve features used in the training of pre-
vious models [12, 26]. These features included out-of-
frame upstream AUG and upstream ORF (oofuAUG), 
MFE, and nucleotide preferences at the position imme-
diately upstream of AUG. In addition, three new features 
were incorporated, including 5´ UTR length, poly(A) 
length, and poly(A) position. To include the data of 34 
5´ UTRs without a poly(A) longer than 5 nt, the longest 
continuous As in these 5´ UTRs were used as poly(A)s 
to calculate relevant features. Therefore, a total of 241 
5´ UTRs with 15 features each, along with relative GFP 
abundance caused by each 5´ UTR, constituted the data-
set for model construction (Additional file 6). The dataset 
was randomly divided into two subsets. One subset, con-
sisting of 15 feature values and the corresponding relative 
GFP abundance values of 193 5´ UTRs, was utilized as 
a training set to calibrate the model based on MLP-NN 
after optimizing hyper-parameters using a 5-fold cross-
validation. Following the calibration, the remaining data 
of 48 5´ UTRs was employed as a test set to evaluate the 
predictive performance of the model. Model prediction 
reveals that a linear fit between the observed abundance 
and predicted abundance in the test set yielded an R2 of 
0.7595 (Fig. 3A), indicating that the MLP-NN model can 
successfully predict the protein abundance caused by 5´ 
UTRs. We conducted four additional train-test splits to 
perform training and validation, resulting in the acquisi-
tion of 4 additional MLP-NN models. The average R2 for 
test set predictions of 5 models, including one original 
and four additional models, was 0.7290 (Additional file 
1: Fig S3A). When new features (5´ UTR length, poly(A) 
length, and poly(A) position) were excluded from five 
distinct training-test splits, the average R2 decreased to 
0.6403 (Additional file 1: Fig S3B), suggesting incorpo-
ration of these three features into the training process 
improves the model’s performance. In addition, we also 
built models based on SVM and random forest. How-
ever, both models resulted in lower R2 values for the test 
set (Additional file 1: Fig S4). These results suggest that, 
compared with the SVM and random forest models, the 
MLP-NN model is more effective at accurately captur-
ing the association between 5´ UTR features and protein 
abundance. To assess our model’s competency in pre-
dicting protein production in other yeasts, we utilized a 
library comprising half a million 50-nt-long random 5´ 
UTRs previously tested in S. cerevisiae [7]. The impact of 
each 5´ UTR on HIS3 production was assessed by mea-
suring the enrichment of cells harboring the 5´  UTR 
after cultivation in selection media [7]. From this library, 

we selected 700 5´ UTRs containing poly(A) and 115 5´ 
UTRs lacking poly(A). The ratio of 700:115 was compa-
rable to that in our 5´ UTR library. Employing the MLP-
NN model, we predicted the enrichment of each 5´ UTR, 
yielding an R2 of 0.503 between predicted and measured 
enrichments (Additional File 1: Fig S5). The relatively low 
R2 could be attributed to differences between S. cerevisiae 
and K. marxianus. Additionally, our model might have 
underperformed in predicting enrichment, which served 
as an indirect indicator of protein abundance [7].

Based on the MLP-NN model, we conducted a sen-
sitivity analysis to evaluate the impacts of features on 
protein abundance. SHAP (SHapley Additive exPlana-
tions) values were calculated for each feature, and nega-
tive and positive SHAP values indicate negative and 
positive impacts on protein abundance, respectively, 
while the absolute value reflects the magnitude of the 
impact. Based on the rank of absolute SHAP values, 5´ 
UTR length was found to be the most influential feature 
on protein abundance (Fig. 3B). The feature of oofuAUG 
ranked as the second most influential feature (Fig.  3B), 
which is expected given that out-of-frame upstream 
AUGs and upstream ORFs have been shown to sig-
nificantly impact translation efficiency [6–8]. Another 
important mRNA feature, MFE, ranked as the third most 
influential feature (Fig. 3B). The poly(A) position ranked 
fourth, indicating that the distance between poly(A) and 
AUG has an important impact on protein abundance 
(Fig.  3B). The impact of poly(A) length was relatively 
small, ranking 11th out of the total 15 features (Fig. 3B).

To visualize the relationship between feature values 
and SHAP values, red and blue dots were used to mark 
high and low feature values, respectively (Fig. 3C). High 
values of 5´ UTR length were found to be strongly cor-
related with negative SHAP values (Fig.  3C). The result 
indicates that the length of the 5´ UTR generally has a 
negative impact on protein abundance, possibly because 
longer 5´ UTRs have a greater tendency to form second-
ary structures that hinder ribosomal scanning [13]. In 
contrast, less negative MFE indicates a less stable sec-
ondary structure [56], leading to positive SHAP values. 
As expected, increased values of oofuAUG were strongly 
correlated with negative SHAP values, indicating the 
strong negative effects of out-of-frame upstream AUGs 
and upstream ORFs on translation [6–8]. Overall, most 
correlations between feature values and SHAP values 
were consistent with previous studies [12], indicating 
that the regulatory mechanisms of 5´ UTR features are 
conserved in K. marxianus. The relationships between 
poly(A) features and SHAP values were examined in 
detail. The length of poly(A) was found to be negatively 
related to the SHAP value (Fig.  3D). In most cases, 
poly(A) longer than 5 nt was associated with a negative 
SHAP value. The result indicates that poly(A) generally 
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acts as a negative regulator of protein production, with 
longer poly(A) resulting in a greater negative effect on 
protein abundance. In Fig.  3E, SHAP values quantified 
the impact of poly(A) at each position on the model’s 
output, which might uncover differences obscured by the 
comparison of mean GFP production shown in Fig. 2C. 
There was no linear correlation between the poly(A) 
positions and SHAP values, but poly(A)s with a distance 
to AUG between 10 ~ 30 nt showed a correlation with 
positive SHAP values  (Fig. 3E). A similar relationship 
between SHAP values and poly(A) features was detected 
in the sensitivity analysis using four models trained with 
additional training-test splits, reflecting the reliability 
of both the model construction and sensitivity analysis 

(Additional file 1: Fig S6). The results suggest that poly(A)
s in this region may improve protein production. It was 
consistent with the opposite behaviors between the total 
5´ UTR poly(A)s and 5´ UTR poly(A)s located close to 
AUG (Fig. 1G, H), indicating that the effect of poly(A) on 
protein production is dependent on its position.

Optimization of 5´ UTR poly(A) to improve protein 
production with guidance of the machine-learning model
The MLP-NN model was trained using data from natu-
ral 5´ UTRs. To validate the predictive accuracy of the 
model on non-natural sequences, 5´ UTRs from 8 genes 
were randomly selected and their poly(A) tracts were 
altered in length or position, resulting in a total of 50 

Fig. 3  Construction and analysis of a machine-learning model that predicts the GFP abundance by features of 5´ UTR. (A) Validation of the MLP-NN 
model. The plot compared the measured versus the predicted relative GFP abundance, with R2 for the train and test sets included. (B) 5´ UTR features 
ranked by their mean absolute SHAP values. Mean SHAP values were obtained by performing sensitivity analysis on the MLP-NN model. Description of 
the features: 5´ UTR length, length of 5´ UTR; oofuAUG, number of out-of-frame upstream AUGs and upstream ORFs; MFE, minimum free energy; poly(A) 
position, the distance between the longest poly(A) tract and AUG; CACC, the presence of at least one CACC motif in the 5´ UTR; GACA, the presence of at 
least one GACA motif in the 5´ UTR; GG, the presence of at least one GG motif in the 5´ UTR; CC in [-7, -6], the presence of the motif CC at position [-7, -6] 
relative to the position of AUG; AA in [-3, -2], the presence of the motif AA at position [-3, -2]; A in [-1], the presence of the A at position − 1; poly(A) length, 
length of the longest poly(A) in 5´ UTR; A/G in [-3], the presence of the A or G at position − 3; T in [-3], the presence of the T at position − 3; AC in [-2, -1], 
the presence of the motif AC at position [-2, -1]; CA in [-7, -6], the presence of the motif CA at position [-7, -6]. (C) The relationship between the values of 
5´ UTR features and SHAP values. Red and blue dots indicated high and low feature values, respectively. (D) A negative correlation between SHAP value 
and the length of poly(A). (E) The relationship between SHAP value and the position of poly(A). The majority of SHAP values were positive at distances 
between 10 and 30 nt, as indicated
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5´ UTR mutants (Fig.  4A). The MLP-NN model pre-
dicted the relative GFP abundance caused by the 5´ UTR 
mutants and these predictions were compared with the 
experimental measurements. The results showed that the 

model’s predictions on 5´ UTR mutants were accurate, 
with an R2 value of 0.7103 (Fig.  4B). When ranking the 
ratio between the relative GFP abundance caused by the 
5´ UTR mutants and that caused by the corresponding 

Fig. 4 (See legend on next page.)
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wild-type 5´ UTRs, 6 of the top 12 mutants with the larg-
est fold changes contained a reduced length of poly(A) 
(Fig. 4C). These results suggest that reducing the poly(A) 
tracts tends to improve protein production, which is con-
sistent with the observation that the length of poly(A) 
is negatively related to protein production (Fig.  3D). To 
validate the accuracy of the model’s predictions regard-
ing the production of proteins other than GFP, alterations 
were made to 5´ UTR poly(A) in a multiple-copy plas-
mid [34], which drives secretory expression of a feruloyl 
esterase (AnFaeA) through the promoter and 5´ UTR of 
INU1. A total of 14 5´ UTR mutants were constructed. 
The secretory activities of AnFaeA caused by these INU1 
5´ UTR mutants were measured and compared with that 
caused by wild-type INU1 5´ UTR. The measured relative 
activities of AnFaeA exhibited a linear correlation with 
the predicted values (R2 = 0.6227) (Fig.  4D). Therefore, 
these results suggest that the model is capable of predict-
ing the production of different proteins in K. marxianus.

Compared to reducing the length of the 5´ UTR 
poly(A), deletion of the full poly(A) tract is more appli-
cable in sequence engineering and might lead to a more 
dramatic effect on protein production. To avoid interfer-
ing with the potential positive effect of poly(A) with a dis-
tance to AUG between 10 ~ 30 nt (Fig. 3E), we proposed 
a strategy to delete poly(A) upstream of 30 nt preceding 
AUG. Thirteen 5´ UTRs containing poly(A) upstream of 
-30 nt were selected and deletions of poly(A)s in these 5´ 
UTRs were predicted to increase protein production by 
the MLP-NN model. These 5´ UTR Δpoly(A) mutants 
were constructed and measured. The measured relative 
GFP abundance caused by the 5´ UTR Δpoly(A) mutants 
showed a decent linear fit with predicted abundance 
(R2 = 0.6316), again proving the accuracy of the model’s 
prediction (Fig.  4E). Among the 13 5´ UTR Δpoly(A) 
mutants, 6 mutants caused a significant increase in the 
GFP abundance compared to the wild-type 5´ UTRs, 
while the remaining 7 mutants showed the same GFP 
abundance as the wild-type 5´ UTRs (Fig. 4F). Therefore, 

approximately 50% of the poly(A) mutants increased 
protein production. To verify the applicability of this 
strategy in different sequence contexts, the top three 5´ 
UTRs (SSH4, INU1, KLMA_80280) showing the highest 
fold increase in GFP abundance after deleting poly(A) 
were constructed on a multiple-copy vector to drive the 
secretory expression of AnFaeA. As shown in Fig. 4G, the 
deletions of poly(A)s in the 5´ UTRs of SSH4, INU1, and 
KLMA_80280 significantly improved the production of 
AnFaeA compared to the wild-type 5´ UTRs. The results 
indicate that deletions of the 5´ UTR poly(A)s upstream 
of 30 nt preceding AUG tend to improve protein produc-
tion in different ORF contexts.

A previous study showed that the presence of poly(A) 
in the 5´ UTR decreased mRNA levels [57]. However, 
we found that deletions of poly(A)s showed inconsis-
tent effects on mRNA levels. Among the 7 mutants that 
caused an increase in GFP abundance, only the Δpoly(A) 
mutant of KLMA_80280 5´ UTR significantly increased 
the GFP mRNA level, while the mRNA levels expressed 
by the other Δpoly(A) mutants were not significantly dif-
ferent from those expressed by the wild-type 5´ UTRs 
(Fig.  4H). Among the three mutants that caused an 
increase in AnFaeA abundance, the Δpoly(A) mutant of 
INU1 5´ UTR increased the AnFaeA mRNA level, while 
the Δpoly(A) mutant of KLMA_80280 5´ UTR decreased 
the mRNA level (Fig. 4I). Therefore, the increased protein 
abundance observed in the 5´ UTR Δpoly(A) mutants 
was not solely due to increased mRNA levels. The results 
suggest that poly(A) represses protein production, either 
with or without reducing mRNA levels.

Discussion
In prior studies, researchers synthesized randomly 
designed short 5´ UTRs (less than 100 nt) to build 
libraries and determined the impact of each 5´ UTR on 
reporter protein abundance [6, 7, 12, 25, 27]. A paral-
lel assay was commonly performed during this step, 
wherein cells containing different 5´ UTRs were grown 

(See figure on previous page.)
Fig. 4  Increasing protein production by reducing or deleting 5´ UTR poly(A) with the guidance of the machine-learning model. (A) Summary of 5´ UTR 
mutants. The mutants were divided into two groups: one with changes in poly(A) length, and the other with shifts of the poly(A) position. (B) Plot rep-
resenting the measured versus predicted relative GFP abundance of 5´ UTR mutants in (A). The value of R2 was shown in the plot. Standard deviations 
(SD) of measured abundance were shown (n = 3). Mutants that changed the poly(A) length and position were labelled in red and green, respectively. (C) 
Ratio between relative GFP abundance caused by mutant 5´ UTRs and that caused by wild-type 5´ UTRs. The mutants were ranked in descending order 
based on the ratios. Four types of mutants were distinguished by different colors. Mean ± SD was shown (n = 3). (D) Plot representing the measured An-
FaeA activity versus predicted AnFaeA production in poly(A) mutants of INU1 5´ UTR. The value of R2 was shown in the plot. SD of measured abundance 
were shown (n = 3). The point representing the wild-type 5´ UTR of INU1 was colored blue. (E) Plot representing the measured versus predicted relative 
GFP abundance caused by 5´ UTR Δpoly(A) mutants. The value of R2 was shown in the plot. Mean ± SD of measured abundance was shown (n = 3). (F) 
Comparison between the relative GFP abundance caused by 5´ UTR Δpoly(A) mutants and that caused by the wild-type 5´ UTRs. Mean ± SD was shown 
(n = 3). The significance was assessed by a two-tailed t-test. **** p < 0.0001; *** p < 0.001; ** p < 0.01; * p < 0.05; ns > 0.05. (G) Comparison between the 
AnFaeA activity caused by 5´ UTR Δpoly(A) mutants and that caused by the wild-type 5´ UTRs. Enzymatic activity was measured after culturing for 72 h. 
Mean ± SD was shown (n = 3). The significance was assessed by a two-tailed t-test. * p < 0.05. (H, I) Comparison between relative mRNA levels of GFP (H) 
or AnFaeA (I) expressed by 5´ UTR Δpoly(A) mutants and those expressed by wild-type 5´ UTRs. mRNA was extracted from samples described in (E) and 
(F) and subjected to qPCR analysis. The mRNA levels of GFP or AnFaeA were normalized with the mRNA level of SWC4. Mean ± SD was shown (n = 3). The 
significance was assessed by a two-tailed t-test. **** p < 0.0001; ** p < 0.01; * p < 0.05; ns > 0.05
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and sequenced together [6, 7, 12, 27]. Subsequently, pre-
dictive models were constructed by incorporating the 
features of the 5´ UTR [12, 25, 26]. In our study, we fol-
lowed a similar strategy with some modifications. Firstly, 
we synthesized a library of natural 5´ UTRs with lengths 
ranging from 12 to 197 nt. Despite longer sequences 
increasing the complexity of machine learning, analyz-
ing native sequences provides valuable information about 
natural regulation. Secondly, we evaluated each 5´ UTR’s 
impact on protein production separately in vivo, reduc-
ing potential interference from other cells during paral-
lel reporter assays. Lastly, we incorporated the length and 
position of poly(A) into machine learning, which had not 
been done before. Our model accurately predicted pro-
tein production induced by the 5´ UTR (R2 = 0.7595), 
suggesting that poly(A) features are effective in con-
structing high-quality models. To further enhance the 
model’s performance, the dataset of 5´ UTRs needs to be 
expanded to augment the diversity of selected features, 
encompassing poly(A) features. Constructing a larger 
library comprising natural 5´ UTRs from K. marxianus 
using high-throughput synthesis techniques is a potential 
avenue [58, 59]. However, this task is challenging con-
sidering that the reported libraries typically consisted of 
5´ UTRs with lengths of 100 nt or less [6, 7, 12, 25, 27]. 
Moreover, it’s crucial to introduce parallel assays to mea-
sure the impacts of 5´ UTRs on protein expression within 
a larger library.

The SHAP sensitivity analysis based on the MLP-NN 
model reveals a general negative correlation between 
poly(A) length and protein production, suggesting that 
poly(A) primarily functions as a negative regulator of 
protein production. Deletions of poly(A)s showed incon-
sistent effects on mRNA levels (Fig.  4H, I), suggesting 
that poly(A) represses protein production either with 
or without reducing mRNA levels. Consistent with this 
hypothesis, it was shown that the 5´ UTR poly(A) of 
PABP1 can independently repress mRNA translation 
and reduce mRNA abundance [57]. To repress transla-
tion, the 5´ UTR poly(A) recruits PABP1 and prevents 
the 40S ribosomal subunit from moving to the initia-
tion codon [22]. A similar mechanism may be employed 
by the 5´ UTR poly(A) in K. marxianus. Meanwhile, 5´ 
UTR poly(A) may reduce mRNA levels by decreasing its 
stability. The negative effect of poly(A) on mRNA sta-
bility is likely proportional to its length, since longer 5´ 
UTR poly(A) sequences were found to result in shorter 
mRNA half-lives in vitro [21]. This may partially explain 
the negative correlation between poly(A) length and pro-
tein production. The Ccr4–Not and Pan2–Pan3 com-
plexes, which are responsible for the 3´-end poly(A) tail 
shortening, have been proposed to mediate the degrada-
tion of mRNAs containing 5´ UTR poly(A) [21]. These 
complexes are conserved from yeast to humans [60, 61], 

suggesting that they likely play similar roles in degrading 
5´ UTR poly(A) sequences in K. marxianus.

It is noteworthy that the Δpoly(A) mutant of 
KLMA_80280 5´ UTR reduced the AnFaeA mRNA level 
(Fig. 4I). The poly(A) in KLMA_80280 5´ UTR is precisely 
located at the 5´ end of the mRNA, and the sequence 
around the transcriptional start site (CCA[+ 1]AAAA) 
matches the consensus sequence of the transcriptional 
initiator in Schizosaccharomyces pombe ((C/T)(C/T)
(A/G)[+ 1]N(A/C)(A/C)) [62], where (A/G)[+ 1] rep-
resents the transcription start site. The transcriptional 
initiator is a core promoter element found near the tran-
scription start site on the DNA, playing a role in direct-
ing transcription initiation [62]. Therefore, the deletion 
of the poly(A) tract might impair the transcription of 
KLMA_80280 5´ UTR, leading to decreased AnFaeA 
mRNA level. In contrast to the decrease in AnFaeA 
mRNA level, the ∆poly(A) mutant of KLMA_80280 5´ 
UTR slightly increased the GFP mRNA level (Fig.  4H). 
Similar inconsistent effects on mRNA levels were 
observed in the Δpoly(A) mutant of INU1 5´ UTR, which 
caused a slight increase in the AnFaeA mRNA level but 
no alteration in the GFP mRNA level (Fig. 4H, I). These 
inconsistent effects of poly(A) deletion on mRNA levels 
might be attributed to the distinct ORFs and 3´ UTRs 
present in the GFP and AnFaeA expression cassettes. As 
integral components of mature mRNA, the 5´ UTR, ORF, 
and 3´ UTR determine the translation process and sec-
ondary structure of mRNA, directly influencing mRNA 
decay and stability [63–68]. Hence, in different sequence 
contexts, deletions of 5´ UTR poly(A) might have varying 
effects on mRNA stability and levels.

The analysis of SHAP values also indicates a weak cor-
relation between improved protein production and 5´ 
UTR poly(A) located between 10–30 nt upstream of 
AUG, suggesting a position-specific effect of 5´ UTR 
poly(A). This finding aligns with the observation that 
poly(A)s with a distance of 30 nt or less from AUG 
were enriched in genes with high translation efficiency 
(Fig.  1G). Poly(A) can form an IRES for cap-indepen-
dent translation [17, 18, 21]. In yeast, the IRES is typi-
cally located immediately upstream of the AUG [69]. 
Hence, compared with poly(A) located further from the 
AUG, poly(A) close to the AUG has a higher probabil-
ity of forming an IRES and enhancing translation. Cap-
independent translation induced by nearby poly(A) may 
counteract the negative effect of poly(A), leading to a net 
positive effect on protein production. The effects of 5´ 
UTR poly(A) on protein production are summarized in 
Fig. 5.

The MLP-NN model was effectively employed to guide 
the optimization of natural 5´ UTR containing poly(A) 
(R2 = 0.6227). Reducing the length or removing poly(A) 
located upstream of 30 nt preceding AUG appeared to 
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be an effective way to enhance protein production. This 
optimization strategy was successfully applied to GFP 
and AnFaeA (Fig.  4F, G), indicating its effectiveness 
across different transcriptional contexts. Traditionally, 
the natural promoter and 5´ UTR from the same gene 
were used together to drive the expression of the gene of 
interest. Several popular 5´ UTRs used in microbial cell 
factories, such as the 5´ UTRs of TDH1 and GAL1 in S. 
cerevisiae [70], and the 5´ UTR of AOX1 in Pichia pas-
toris [71], contain poly(A) tracts beyond or around 30 nt 
preceding AUG. Manipulating poly(A)s in these 5´ UTRs 
might offer a new approach to enhancing yield.

Conclusion
An MLP-NN model was trained using features encom-
passing 5´ UTR poly(A) length and position, which 
demonstrated good performance in predicting protein 
production. The model showed that poly(A) with a dis-
tance to AUG between 10 ~ 30 nt is slightly correlated 
with improved protein production. 5´ UTR poly(A) 
upstream of 30 nt is negatively associated with protein 
production. Moreover, the negative effect of poly(A) on 
protein production increases with tract length. With the 
guidance of the machine model, reducing or removing 
poly(A) upstream of 30 nt preceding AUG is an effective 
strategy for improving protein production. This approach 
could be applied to enhance the yield of K. marxianus 
and other microbial cell factories.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12934-023-02271-3.

Additional file 1: Fig S1: Enrichment and depletion of four bases between 
100 nt and 30 nt preceding AUG (-100~-30) in different groups of genes. 
The genes were grouped based on the abundance of the encoded 
proteins (A, B) or the level of the produced mRNAs (C, D), where the top 

20% (A, C) and bottom 20% (B, D) were selected to calculate the relative 
entropy of four bases in this region. The significance was assessed using 
a two-tailed Fisher’s exact test. Logos colored in red or blue represented 
p < 0.05, while gray logos represented p > 0.05. Fig S2: Comparison of 
protein abundance/mRNA level of different gene groups. Genes were 
categorized into two groups based on either the presence or absence of 
5´ UTR poly(A) (A), or the presence or absence of 5´ UTR poly(A) with a dis-
tance of 30 nt or less from AUG (B). The significance was determined using 
a two-tailed t-test. ** p < 0.01. * p < 0.05. Fig S3: Validation of constructed 
MLP-NN models after five training-test splits using two types of feature 
selection. (A) A total of 15 features, including 5´ UTR length, poly(A) length 
and poly(A) position were included. A total of 5 different models were 
constructed using different training-test splits, and the last model was 
shown in Fig. 3A as a representative. The average coefficient of determina-
tion (R2) for predicting the test sets was 0.7290. (B) A total of 12 features 
were included, while features of 5´ UTR length, poly(A) length and poly(A) 
position were excluded. A total of 5 different models were constructed 
using different training-test splits. The average R2 for predicting the test 
sets was 0.6403. Fig S4: Validation of the random forest model (A) and 
the support vector machine model (B). The plot compared measured 
versus the predicted relative GFP abundance, with R2 for the train and test 
sets included. Fig S5: Validation of the MLP-NN model’s ability to predict 
protein production in S. cerevisiae. A 5´ UTR library consisting of half a 
million 50-nt sequences was constructed previously in S. cerevisiae [7]. The 
impact of each 5´ UTR on HIS3 production was assessed by measuring the 
enrichment of cells harboring the 5´ UTR after cultivation in selection me-
dia. From this library, a total of 700 5´ UTRs with poly(A) and 115 5´ UTRs 
without poly(A) were selected. Fifteen features were extracted from the 
5´ UTRs, and the MLP-NN model was employed to predict enrichments 
of 5´ UTRs. The predicted enrichments were compared with measured 
enrichments, resulting in an R2 of 0.503. Fig S6: The relationship between 
SHAP values and poly(A) features from models constructed using four 
additional training-test splits

Additional file 2: Table S1 List of plasmids. Table S2 List of primers. Table 
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