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Abstract

Background: Glycerol has enhanced its biotechnological importance since it is a byproduct of biodiesel synthesis.
A study of Escherichia coli physiology during growth on glycerol was performed combining transcriptional-
proteomic analysis as well as kinetic and stoichiometric evaluations in the strain JM101 and certain derivatives with
important inactivated genes.

Results: Transcriptional and proteomic analysis of metabolic central genes of strain JM101 growing on glycerol,
revealed important changes not only in the synthesis of MglB, LamB and MalE proteins, but also in the
overexpression of carbon scavenging genes: lamB, malk, mglB, mglC, galP and glk and some members of the RpoS
regulon (pfkA, pfkB, foaA, foaB, pgi, poxB, acs, actP and acnA). Inactivation of rpoS had an important effect on
stoichiometric parameters and growth adaptation on glycerol. The observed overexpression of poxB, pta, acs genes,
glyoxylate shunt genes (aceA, aceB, glcB and glcC) and actP, suggested a possible carbon flux deviation into the
PoxB, Acs and glyoxylate shunt. In this scenario acetate synthesized from pyruvate with PoxB was apparently
reutilized via Acs and the glyoxylate shunt enzymes. In agreement, no acetate was detected when growing on
glycerol, this strain was also capable of glycerol and acetate coutilization when growing in mineral media and
derivatives carrying inactivated poxB or pckA genes, accumulated acetate. Tryptophanase A (ThaA) was synthesized
at high levels and indole was produced by this enzyme, in strain JM101 growing on glycerol. Additionally, in the
isogenic derivative with the inactivated tnaA gene, no indole was detected and acetate and lactate were
accumulated. A high efficiency aromatic compounds production capability was detected in JM101 carrying
pJLBaroG™'tktA, when growing on glycerol, as compared to glucose.

Conclusions: The overexpression of several carbon scavenging, acetate metabolism genes and the absence of
acetate accumulation occurred in JM101 cultures growing on glycerol. To explain these results it is proposed that in
addition to the glycolytic metabolism, a gluconeogenic carbon recycling process that involves acetate is occurring
simultaneously in this strain when growing on glycerol. Carbon flux from glycerol can be efficiently redirected in
JM101 strain into the aromatic pathway using appropriate tools.
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Background

Escherichia coli is capable of utilizing several com-
pounds as carbon sources. However, glucose is the pre-
ferred carbon source and its rapid utilization depends
on the phosphoenolpyruvate: carbohydrate phospho-
transferase system (PTS). PTS not only transports spe-
cific sugars but also in the absence of its substrates,
stimulates, through adenylate cyclase (Cya), the produc-
tion of cAMP which in turn activates the transcription
of many cAMP-CRP dependent catabolic genes, includ-
ing those involved in glycerol utilization [1]. Glycerol,
an energy-poor carbon source, has enhanced its biotech-
nology importance as carbon source since it is a by-
product of the biodiesel synthesis, whose production is
expected to increase in the future [2-4]. A balanced aer-
obic growth on glycerol depends on three global regula-
tors: cAMP-CRP as the principal inducer of the glycerol
catabolic regulon (including glpF, glpK and glpD); Cra
(FruR) as regulator of some gluconeogenic genes, and
ArcA as regulator of several central metabolic genes in-
cluding the TCA cycle and others involved in respiration
[1,5]. E. coli growing aerobically on glycerol incorporates
this molecule into central metabolism as dihydroxyacet-
one phosphate (DHAP), a metabolite which can partici-
pate in both gluconeogenic and glycolytic processes
(Figure 1) [6]. The expression of metabolic genes, in par-
ticular the overexpression of pykA, pckA, gltA, fumABC,
sdh, mdh and acnA genes and the downregulation of the
ackA gene, has been reported for E. coli growing on gly-
cerol [7]. Proteomic and enzymatic assay studies, in
which cells were grown on a complete medium (Luria
broth) plus glycerol, reported overexpression of the fbp
gene and at lower levels aceBA operon [8]. However,
studies on the carbon stress response of E. coli growing
only on an energy-poor carbon source such as glycerol
are scarce. It is know that E. coli displays carbon stress
responses when growing under carbon source limitation
similar to those encountered during stationary phase or
glucose limited conditions in chemostats cultures [9,10],
fed batch cultures [11], or in strains with limited glucose
transport capabilities [12,13]. E. coli carbon stress re-
sponse utilizes mechanisms which are part of the gen-
eral stress response, and involve several changes in
cellular physiology. This response can be a fast emergency
strategy or a long-term program of adaptation to starva-
tion [14]. The master regulator of the general stress re-
sponse is the sigma factor RpoS, whose regulation is
complex and involves transcriptional and posttranscrip-
tional control mechanisms. For example, rpoS transcrip-
tion is stimulated by downshifts in the specific growth
rate () [9,15,16]. Furthermore, a continuous reduction in
W, results in an inversely correlated increase in rpoS tran-
scription (5 to 10- fold). In addition, when an abrupt ces-
sation of growth occurs, as in response to sudden glucose
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starvation, rpoS transcription is also induced [17,18]. In

strains lacking PTS which grow slowly on glucose as the
sole carbon source, cells apparently sense low levels of

carbon and induce rpoS transcription and several other
genes involved in carbon scavenging, as well as a carbon
(acetate) recycling mechanism [12,13,19-21]. Since rpoS
expression is induced by different stresses, genes whose
transcription are regulated by this sigma factor can be
modulated by various coregulators such as Crl. Crl
responds to indole as a signal molecule, increasing gene
transcription of some genes by binding to RpoS. This in
turn, stimulates RNA polymerase holoenzyme formation
[22]. Carbon stress responses also involve amino acid star-
vation conditions in which ppGpp concentration increases
rapidly to the millimolar range. When cells are growing
under stress conditions, including slow growth on glucose,
the expression of central metabolic genes is modified by
altering the transcription of genes that redirect metabol-
ism [12-14,19-21].

In this report some non described features detected in
E. coli strain J]M101 [23] grown in minimal medium on
glycerol as the sole carbon source, are presented. Gene
transcription levels and protein production patterns cor-
responding to a carbon stress response were detected.
Overexpression of genes involved in the production and
consumption of acetate that correlated with no detection
of this metabolite in cultures of JM101 grown on gly-
cerol, as well as the capability of acetate and glycerol
coutilization in mineral media cultures were also
detected in this strain, in agreement with a “carbon
stress acetate recycling” response. Additionally, derivative
strains with inactivated important genes such as rpoS
and some members of the PEP-PYR node (pckA, poxB,
ppc, pykA and pykF) were constructed and evaluated to
clear the role of their coded proteins in the J]M101 gly-
cerol metabolism.

Results and discussion

Growth of strain JM101 on different carbon sources

Strain JM101 was grown on different carbon sources to
compare its metabolic capacities. As shown in Table 1
and Figure 2, when this strain was grown on glucose, a
high p was obtained (0.69 h™') and acetate was produced.
When glycerol was used as the sole carbon source, its p
decreased to 0.49 h™' and no acetate was detected
(Table 1, Figure 2A). Low levels or no acetate production
also have been detected in other E. coli strains grown on
glycerol [7,8]. When both glucose and glycerol were
present as carbon sources, as expected a diauxic re-
sponse was obtained in JM101. Glucose was utilized first
and glycerol was used after glucose had been completely
depleted; however, less acetate was produced when this
strain was grown on a mixture of these two carbon
sources (Table 1, Figure 2B), suggesting that part of the
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Figure 1 Central metabolic reactions of strain JM101 growing on glycerol as the sole carbon source and relative gene transcription
values as compared to the same strain grown on glucose. Metabolites abbreviations: Gly, glycerol, Gly3P glycerol-3-phosphate; G, glucose;
G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; F1,6P, fructose-1,6-biphosphate; DHAP, dihydroxyacetone phosphate; G3P, glyceraldehyde
3-phosphate; G1,3P, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phophoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate;
6PGLN, 6-phosphoglucono-&-lactone; 6PGNT, 6-phophogluconate; Ru5P, ribulose-5-phosphate; R5P, ribose-5-phosphate; Xu5P, xylulose-5-phosphate;
S7P, seudoheptulose-7-phosphate; E4P, erythrose-4-phosphate; Ac-CoA, acetyl coenzyme A; Ac-P, acetyl phosphate; A-AMP, acetyl-AMP; CIT, citrate; ICT,
isocitrate; GOX, glyoxylate; a-KG, a-ketoglutarate; SUC-CoA, succinyl-coenzyme A; SUC, succinate; FUM, fumarate; MAL, malate; OAA, oxaloacetate;
KDPGNT, 2-keto-3-deoxy-D-gluconate-6-phosphate; PRPP, 5-phospho-D-ribosyl-a-1-pyrophosphate; DAHP, 3-deoxy-D-arabino-heptulosonate-7-
phosphate; SHK; shikimate; CHO, chorismate; ANT, anthranilate; TRP, L-tryptophan. Genes in red: overexpressed. Genes in green: underexpressed. Genes
in black: no change.

acetate produced when growing on glucose as the sole
carbon source, was utilized when both substrates were
present in the medium. JM101 utilized glucose and
accumulated acetate when grown with a mixture of glu-
cose and acetate as carbon sources (Figure 3A). In con-
trast, when a mixture of glycerol and acetate was used,

JM101 coutilized both carbon
Figure 3B).

sources (Table 1,

Grown on glycerol of different JM101 derivatives
The absence of acetate production in strain JM101 growing
on glycerol suggested that in this strain production and
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Table 1 Specific growth rates (p) and stoichiometric parameters of strain JM101 grown on single or mixtures of carbon

sources

Condition p (h-1) Yxss (g/mmolC) gs (mmolC/gdecw h) mmolC of acetate
produced (+) or
consumed (-)

Glucose 0.69 0.013 51.8 +28.2

Glycerol 049 0.014 343 Not detected

Glucose + glycerol 0.72 (045) 0.017(0.006) 431 +4.1

Glycerol + acetate 043 0011 395 -11.0

Glucose + acetate 0.72(0.1) 0.013(0.017) 554(6.55) +6.0

Mean values from at least three independent cultures are presented. Differences between values in these experiments were <10%. The numbers in parentheses
indicate data for the specific strain in those stages in which only the remaining carbon source was available.

consumption of acetate occurred simultaneously, as has
been reported in strains derived from JM101 lacking PTS
that grow slowly on glucose. In these derivatives where the
glycolytic metabolism is apparently functioning, the gluco-
neogenic metabolism is induced and glucose and acetate
are utilized simultaneously [12,13,19,21,24]. These results
indicate that growth on glycerol of strain JM101 could acti-
vate some important gluconeogenic genes like poxB and

pckA involved in carbon (acetate) recycling. Therefore,
JM101 derivatives were constructed with inactivated key
genes including rpoS, poxB and pckA (see Methods), in
order to evaluate the role of their coded proteins in the gly-
cerol fermentation, testing the effects on y, g5 (glycerol spe-
cific rate consumption), and Y/, (biomass/substrate yield),
when growing in mineral medium with glycerol or glucose
as the sole carbon source.
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Figure 2 A) Growth profiles and substrate utilization (mmolC/L) of strain JM101 grown on glucose or glycerol and in the mixture glucose
plus glycerol. B- Acetate levels (mmolC/L) of strain JM101 grown on glucose, or glycerol and on a mixture of glucose plus glycerol.
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The JM101ArpoS derivative had a two-hour delay for
growing in mineral media with glycerol (data not shown)
and once adapted, the g was 10% slower than the parental
strain (Table 2A). This delay was not observed in the de-
rivative growing with glucose (data not shown), which had
a lower g, (28%) and a higher Y,/ (23%) as compared to
strain JM101 (Table 2B). RpoS is not directly involved in
the expression of the genes that incorporate glycerol in the
central metabolism (glpF, glpD and glpK); however, its rela-
tion with glpD is apparently indirect through ArcAB. Some
reports argue a feedback loop, RpoS-mediated stationary
phase induction of the arcA gene [25]. It has been
reported that RpoS regulates the expression of poxB and
other catabolic genes involved in carbon stress responses
[12,20,26]. Therefore, it appears that RpoS, the master
regulator of the stress response, is important for adapt-
ing and maintaining an adequate balanced growth on
glycerol as the sole carbon source in mineral media, as
compared to the strain grown on glucose (Tables 2A-B).

The JM101ApoxB derivative had the same g5 and Y, as
the parental strain but its p was also reduced 10% and
accumulated acetate in the culture, when growing on

glycerol (Table 2A). This result can be explained in two
ways: poxB inactivation could be responsible for acs
underexpression and/or could indicate that utilization of
PYR through PoxB to produce acetate and the concomi-
tant reduction of quinones at the membrane [18], could be
necessary for the complete induction of the glyoxylate
shunt (Figure 1). Additional evidence supporting PoxB in-
volvement in acetate utilization when glycerol is utilized as
unique carbon source, is presented in the next section,
where the overexpression of poxB, acs, aceBA genes is pre-
sented and discussed. Nevertheless it is important to no-
tice that the JM101ArpoS derivative did not accumulate
acetate which is in fact produced in the JM101ApoxB de-
rivative. RpoS as mentioned is involved in the expression
of carbon stress genes including poxB. Therefore, it
appears that as has been proposed poxB and other mem-
bers of the RpoS regulon could be transcribed also by
RpoD, the vegetative sigma factor, in certain grown condi-
tions, including slow grown on glucose [12,18-20] and in
agreement with these results, maybe in glycerol fermenta-
tion. In the absence of RpoS, poxB could be transcribed by
RpoD, explaining the absence of acetate in JM101ArpoS
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Table 2 Specific growth rates (u) and stoichiometric parameters of strain JM101 and derivative mutants grown on

glycerol (A) and glucose as carbon source (B)

A)

Strain phM Y,s (g/mmolC) qs (mmolC/gdcw h) Acetate (g/L)
IJM101 049 (+/-0.02) 0.014 (+/-0.001) 34.6 (+/-1.90) No detected
JM101ApckA 045 (+/-0.03) 0.014 (+/-0.001) 333 (+/-4.56) 0.12 (+/-0.01)
JM101ApoxB 044 (+/-0.01) 0.014 (+/-0.001) 355 (+/-2.14) 0.12 (+/-0.01)
JM101Appc No growth

IJM101ApykA 046 (+/-0.02) 0.015 (+/-0.001) 303 (+/-0.12) Not detected
JM101ApykF 046 (+/-0.02) 0.014(+/-0.002) 314 (+/-1.00) Not detected
IJM101ArpoS 044 (+/-0.02) 0.018 (+/-0.002) 24.8 (+/-2.57) Not detected
B)

Strain p(h™ Y,s (g/mmolC) qs (mmolC/gdcw h) Acetate (g/L)
IJM101 0.69 (+/-0.03) 0.013 (+/-0.001) 518 (+/-2.22) 0.5 (+/-0.01)
JM101ApckA 0.62 (+/-0.09) 0.023 (+/-0.011) 50.7 (+/-16.82) 0.7 (+/-0.02)
JM101ApoxB 0.68 (+/-0.04) 0.014 (+/-0.002) 50.7 (+/-2.50) 04 (+/-0.02)
JM101Appc No growth

IM101ApykA No determinated No determinated No determinated

IM101ApykF No determinated No determinated No determinated

IM101ArpoS 0.71 (+/-0.01) 0.013 (+/-0.004) 545 (+/-8.34) 0.5 (+/-0.01)

[20]. In JM101ApoxB acetate is produced indicating the
necessity of PoxB in acetate recycling metabolism. An al-
ternatively not exclusive explanation for the absence of
acetate in JM101ArpoS is that in this derivative, a lower
glycerol specific consumption occurred which could be re-
sponsible of less PEP production which is sensed as a low
carbon flux that in turn induces carbon reutilization.

The JM101ApckA derivative had 2 h adaptation time for
growing in mineral media as compared to the parental
strain J]M101 (data not shown), accumulated acetate during
fermentation and the p was reduced about 10% when grow-
ing on glycerol. However, the qs and Y,/ values were not
substantially affected in this mutant strain (Table 2A). PckA
appears to be important for glycerol utilization and also for
completing a gluconeogenic cycle to prepare strain JM101
to grow in a gluconeogenic substrate such as acetate. Pro-
duction of acetate in this mutant also indicates that carbon
flux through PckA could be important to maintain ATP/
ADP levels, since it has been reported that overexpression
of pckA enhances ATP intracellular levels [27] (Figure 1).
This proposal is supported by transcription results pre-
sented in the next section, where overexpression of pckA is
presented and discussed.

The derivative carrying the ppc gene inactivated was
incapable of growing on glycerol or glucose as the sole
carbon sources (Tables 2A-B), indicating that Ppc is
essential to grow in these two carbon sources, and can-
not be replaced by the Pyk enzymes (Figure 1) and PEP
has to be converted directly into OAA using Ppc to
allow growth on glucose or glycerol as sole carbon

sources. Similar results have been reported by others
[28-31].

Derivatives carrying pykA or pykF inactivated genes
did not substantially modify the specific growth rates as
compared to the parental strain, when growing on gly-
cerol as the sole carbon source (Table 2A).

Differential transcription of genes and coded proteins
production in the strain JM101 grown on glycerol, as
compared to glucose

Glycerol uptake

Glycerol is converted into DHAP by a process of uptake
(GIpF), phosphorylation (GlpK), and dehydrogenation
(GlpD) (Figure 1). As expected, glpF and glpK were overex-
pressed in strain J]M101 grown on glycerol (Table 3). In
agreement, the protein products of these genes, GIpK
(16.18X) and GlpD (5.18X) -involved in the transformation
of glycerol into glycerol-3-phosphate (Gly3P) and this me-
tabolite into DHAP, respectively- were overproduced in
this strain (Table 4). Surprisingly, the expression of glpD
was not substantially modified (Table 3, Additional file 1).
Interestingly, the transcription of glpF and glpK is regulated
by CRP and GIpR, whereas the expression of glpD is
regulated by CRP, GIpR and ArcA, as proposed elsewhere
[1,5].

Glucose and other carbohydrate scavengers

Strain JM101 grown on glycerol overexpressed, as
compared to the expression values grown on glucose,
several genes of the mal/lam and mgl/gal regulons:
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Table 3 Relative transcription levels determined by

RT-qPCR of several group of genes from strain JM101 on
glycerol as the only carbon source

Glycolysis

Gluconeogenic,
anaplerotic and
glyoxylate shunt

TCA cycle

acek 067 +/- 0.17
acef 0.80 +/- 0.22
eno 0.86 +/- 0.12

fbaA 1.52 +/- 0.09
fbaB 2.76 +/- 0.22
gapA 0.72 +/- 0.06

gapC-1 131 +/-0.10
gapC-2 3.19 +/- 067

glk 3.81 +/- 0.14
gpmA 0.90 +/- 0.09
IpdA 0.56 +/- 0.05
pfkA 191 +/- 022
pfkB 2.15 +/- 001
pgi 1.58 +/- 0.37
pgk 108 +/- 0.13
pyKA 1.77 +/-0.10
pykF 0.98 +/- 0.09
tpi 136 +/- 0.10

Pentose phosphate
Entner-Doudoroff

eda 1.83+/-029
edd 4.45+/-029
gnd 0.80+/-0.00
talA 1.64+/-047
talB 0.60+/-0.01
tktA 1.22+/-0.06
tktB 0.70+/-0.11
zwf 1.34+/-0.04

Aromatic
pathway

aroA 081 +/- 0.03
aroB 1.98 +/- 0.59
aroC 134 +/- 0.02
aroD 3.29 +/- 0.07
arof 547 +/- 0.16
arof 132 +/- 0.08
aroG 0.50 +/- 0.13
aroH 1.36 +/- 0.13
aroK 1.01 +/- 0.07
arol 248 +/- 0.09

aceA 197 +/- 0.39
aceB 195 +/- 0.06
ackA 149 +/- 0.28
acs 416 +/- 0.34
fop 1.51 +/- 0.10
glcB 181 +/- 056
glcC 181 +/-0.28
maeB 1.23 +/- 0.01
pCkA 5.56 +/- 1.77
poxB 7.33 +/- 0.56
ppc 1.11 +/- 0.14
pta 2.10 +/- 0.23
ppsA 1.26 +/- 0.22
sfcA 2.05 +/- 034

Glycerol uptake
glpF 7.16 +/- 0.15
glpK 5.60 +/- 0.87
glpD 1.26 +/- 0.25
glpR 2.40 +/- 0.06

Respiration,

transhydrogenases

frdA 1.58+/-0.15
frdB 1.73+/-0.11
frdC 4.68+/-021
frdD 2.01+/-0.34
pntA 0.69+/-0.03
udhA 489+/-088

acnA 1.58+/- 0.26
acnB 4.71+/- 047
fumA 2.44+/- 045
fumB 7.49+/- 040
fumC 0.34+/- 0.10
gltA 0.76+/- 0.02
icd 047+/- 0.10
mdh 0.65+/- 0.10
sdhA 1.04+/- 0.01
sdhB 1.37+/- 042
sdhC 0.92+/- 0.05
sdhD 1.13+/- 021
sucA 0.814/- 0.13
sucB 0.80+/- 0.23
sucC 0.794/- 0.07
sucD 1.364/- 0.13

mal/lam and
mgl/gal regulons

galP 5.05+/-026
galk 038+/-0.13
galS 0.57+/-001
galT 0.49+/-0.00
lamB 1.36+/-0.30
mglB 5.05+/-0.58
mglC 2.28+/-0.12
malE 1.77+/-0.20
pgm 2.37+/-0.62

Transporters/
porins

actP 13.49+/-1.31
aroP 1.61+/-0.00
shiA 0.75+/-0.02
ompC 0.17 +/- 0.01
ompF 1.17 +/- 0.21
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Table 3 Relative transcription levels determined by
RT-qPCR of several group of genes from strain
JM101 on glycerol as the only carbon source
(Continued)

Regulators
arcA 1.25+/-0.29
arcB 4.45+/-0.56
creB 3.19+/-0.55
creC 6.27+/-1.69
crp 1.714/-0.12
csrA 1.034/-0.14
csrB 0.48+/-0.10
cyaA 1.64+/-0.24
fadR 1.22+/-0.31
fruR 3.00+/-0.20
iclR 0.29+/-0.10
ihfA 1.15+/-0.25
mic 1.18+/-0.15
pdhR 0.57+/-0.19
ptsG 0.14 +/-0.02
rpoS 1.04+/-0.22

Transcription levels of the measured genes of strain JM101 grown on glucose
were used as controls to normalize (as one) the data using the RT-qPCR value
for the corresponding gene. Results presented are the averages of at least
three independent measurements of the RT-qPCR expression values for each
gene. Expression levels are presented as 27227 values (see Methods).

lamB, malE, mglB, mglC, galP, glk and pgm (Table 3,
Additional file 1). As shown in Table 4, the products of
some of these genes, MgIB (81.02X), LamB (6.94X) and
MalE (7.06X) were produced at higher concentrations
in the strain grown on glycerol. The mal/lam system in
E. coli contains genes involved in transport and catabolism
of maltose or maltodextrins [32-34] and the mgl/gal system
contains genes related to the transport (ga/P and mglBAC)
and amphibolic utilization (galETKM) of D-galactose
[34-36]. In E. coli, the induction of both regulons has
been reported as a response to growth at low glucose-
carbon conditions such as those encountered in chemostats
at low dilution rates or in starving cells [9,10,34-37]. Also,
strains with limited glucose transport capacity growing
slowly on this carbohydrate, such as those lacking PTS,
overexpress the mal/lam and mgl/gal regulons, in a “nutri-
ent scavenging stress response” [10,13,19]. In these scenar-
ios, increased expression levels of these regulons have been
reported, since high levels of cAMP-CRP are detected and
the synthesis of maltotriose (mal/lam) and D-galactose
(mgl/gal) as autoinducers are produced [1,9,10,34,38]. These
results are in agreement with those reported by Liu et al.
(2005) which indicate that poor carbon sources like glycerol,
develops in E. coli a “carbon source foraging strategy” [37].
In strain JM101 grown on glycerol as the sole carbon
source, high levels of ¢cAMP and glycogen synthesis are
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Table 4 Proteins differentially produced in strain JM101 grown on glycerol, as compared to the production on glucose

Spot No. Gene name Protein description Mw pl Ratio 10D
glycerol/IOD
glucose

B11 argG Argininosuccinate synthase 50038 523 0.37

58 cdd Cytidine deaminase 31805 542 6.97

51 fumA Fumarate hydratase class | 60774 6.11 238

57 mglB D-galactose-binding periplasmic protein 35690 5.68 81.03

11 glpD Aerobic glycerol-3-phosphate dehydrogenase 56886 6.97 518

D11 glpK Glycerol kinase 56480 536 16.18

75 glnA Glutamine synthetase 52099 5.26 0.31

60 argT Lysine-arginine-ornithine-binding periplasmic protein 28088 562 257

P10 ompC Outer membrane protein C 40343 4.58 0.32

31 malE Maltose-binding periplasmic protein 43360 553 7.07

27 lamB Maltoporin 49995 481 6.94

50 pCkA Phosphoenolpyruvate carboxykinase [ATP] 59891 546 9.17

73 ptsl Phosphoenolpyruvate-protein phosphotransferase 63750 4.78 0.23

D10 deoD Purine nucleoside phosphorylase deoD-type 26161 542 2.08

63 gaty D-tagatose-1,6-bisphosphate aldolase subunit 31021 587 55.83

62 udp Uridine phosphorylase 27313 5.81 741

K10 tnaA Tryptophanase 53119 5.88 17.03

72 typA GTP-binding protein TypA/BipA 67542 5.16 044

Spot intensities were quantified using PD Quest software 8.0.1 on three experiments. Only reproducible phenotypes, with a Student’s t test value p <0.05 are

shown. Additional file 3 contains other important proteomic parameters.
pl: Isoelectric point.

Mw: Molecular weight.

I0D: Integrated optical density.

expected, as well as glycogen degradation to maltodextrins-
glucose and D-galactose. In this strain, galT, galR and galS
genes were apparently slightly underexpressed, whereas the
galP gene was overexpressed (Table 3). Furthermore, the
gal regulon genes are differentially regulated by cAMP-CRP
and D-galactose, and in the absence of D-galactose the ex-
pression of the mg/BAC operon can be activated by cAMP-
CRP, whereas the transcription of galP gene is strongly
repressed [38,39]. The inactivation of ga/P did not modify
the p of J]M101AgalP grown on glycerol (data not shown),
indicating that GalP is not playing an important role in
glycerol transport. The malE gene and the mg/BAC op-
eron are transcribed by RpoS. In E. coli, rpoS is induced
when cells are growing under stress conditions such as
carbon, phosphorus, nitrogen or amino acid starvation.
Therefore, RpoS apparently replaces, at least partially, the
vegetative sigma factor RpoD in the transcription of cer-
tain genes when growing in glucose limited conditions
[12,19,20,37,40]. It has been reported that the regulatory
protein Crl increases RpoS activity by direct interaction
with the RpoS holoenzyme [41]. In addition, the MalE pro-
tein is produced at low levels in E. coli crl or crl/rpoS
mutants, as compared to the wild type strain [41]. There-
fore, it is possible that in JM101 growing on glycerol,
RpoS-Crl could upregulate the expression of some

members of these regulons. In JM101 grown on glycerol,
the OmpC porin was produced at lower levels as com-
pared to glucose (Table 4). The ompC gene, which was
underexpressed in this condition (Table 3), has a complex
regulation including protein regulators (OmpR, CpxR,
Lrp, IHF and EnvY) and small regulatory RNAs (micC,
rseX and rybB) that respond to different signals [42-46]. In
JM101, the low expression levels of ompC and the low pro-
duction of OmpC were apparently coordinated with the
high production of LamB, which appears to be the principal
porin when this strain was grown on this carbon source
(Tables 3 and 4, Additional file 1). Since lamB expression
level is increased when nutrients are scarce, it has been pro-
posed that LamB can transport a wide variety of sugars such
as glucose, lactose, arabinose, and even glycerol
[10,13,19,47]. During the growth of JM101 on glycerol, it is
possible that sensing of low nutrient availability or low
osmolarity, compared to the growth on glucose, could be
part of the signals involved in the reduced production of
OmpC.

Central metabolism genes

Glycolysis

The glk gene, which codes for glucokinase (Glk), was
overexpressed in J]M101 grown on glycerol (Table 3). Glk
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phosphorylates glucose into G6P during its transport
from the periplasm to the cytoplasm by GalP or MIgABC
[6,12,13,48]. glk carries a putative RpoS promoter [20]
and is apparently repressed by Cra (FruR) [49]. The pgi
gene was also slightly overexpressed in this strain (Table 3);
as well as in strains lacking PTS growing slowly on glucose
as the only carbon source [13]. Pgi is involved in the re-
versible transformation of G6P into fructose-6-phosphate
(F6P) (Figure 1). In the upper part of the glycolytic path-
way, pfkA and pfkB encoding for phosphofrukinase I and
II, respectively, were overexpressed (Table 3, Additional
file 1). PfkA and PfkB convert F6P to fructose-1,6P (F1,6P)
consuming one ATP molecule (Figure 1). These proteins
are an important control point of the glycolytic flux. The
PfkA gene is positively regulated by CsrA [49] and has a
putative RpoS promoter [20,41]. Additionally, E. coli
strains inactivated in the crl or rpoS genes produced lower
levels of PfkA as compared to the parental strain, suggest-
ing that this gene is part of the RpoS regulon [41]. The ex-
pression of pfkB is repressed by CsrA [49] and this gene
has a putative promoter that could be transcribed by RpoS
[20,50,51]. Interestingly GatY, a protein that is part of the
galactitol degradation pathway, was produced at very high
levels (55.83X) in this strain grown on glycerol, as com-
pared to those on glucose (Table 4). GatY is a reversible
enzyme that catalyzes the synthesis of tagatose-1,6 phos-
phate from DHAP and GA3P; it is regulated by CRP, ArcA
and GatR. GatY overproduction apparently occurs as a
growth response on glucose-limited conditions such as
those found in fed batch cultures [52]. The transcripts of
the gluconeogenic fbaA and fbaB genes, whose coded pro-
teins are involved in the reversible transformation of
DHAP and glyceraldehyde 3-phosphate (G3P) into F1,6P,
were overexpressed in JM101 (Table 3). This is an import-
ant gluconeogenic step for glycerol metabolism (see below).
DHAP can be transformed into G3P by TpiA (Figure 1).
DAHP and G3P can be transformed into F1,6P through
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FbaA and FbaB. Additionally, G3P is a key metabolite that
can be utilized in several pathways including the glycolytic
and pentose pathways (see below). This compound is trans-
formed by GapA into G1,3P, which in turn is transformed
into PEP through the participation of several glycolytic
enzymes (Figure 1). Interestingly, the expression levels of
tpiA, gapA, gpmA and pgk were not substantially modified
in JM101 grown on glycerol as compared to the values
obtained for the growth on glucose (Table 3). E. coli has
two pyruvate kinases catalyzing the conversion of PEP into
PYR coupled to the synthesis of ATP. These isoenzymes,
PykA and PykF, are coded by the pykA and pykF genes, re-
spectively. This reaction is the second point of flux control
in the glycolytic pathway (Figure 1). Strain JM101 slightly
overexpressed the pykA gene (Table 3). This data is in
agreement with previous reports of other E.coli strains
grown on glycerol as the only carbon source [7,8]. The
pykA and pykF genes have putative promoters that could
be transcribed by RpoS, and pykF is negatively regulated by
Cra [20,53]. PykF is activated by F1,6P, whereas PykA is
modulated by AMP and sugars of the pentose-phosphate
pathway. Consequently, in conditions of low F1,6P levels
as expected in cells grown on glycerol, PykA is probably
the enzyme mainly utilized for growth [7]. As mentioned,
single inactivation derivatives were constructed in the two
genes coding for these pyruvate kinases and their growth
on glycerol was evaluated. No significant differences were
found in the p of these mutants as compared to the paren-
tal strain (Table 2A). However, the total specific activity of
pyruvate kinase was lower in the pykA mutant strain as
compared to the strain with pykF inactivated or the paren-
tal strain (Figure 4). These results suggest that PykA was
produced preferentially when JM101 was grown on gly-
cerol and, therefore, it is apparently responsible for the
main pyruvate kinase activity in vivo. Finally, PYR is uti-
lized by the pyruvate dehydrogenase (Pdh) enzyme for the
synthesis of AcCoA. The glycolytic genes, whose coded
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Figure 4 Specific activities of the pyruvate kinases in strains JM101ApykA and JM101ApykF respectively, grown on glycerol, as
compared to the strain JM101 grown on glycerol.
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products are involved in this transformation (gceE, aceF
and IpdA), were slightly underexpressed in J]M101 grown
on glycerol, as compared to the growth on glucose
(Table 3). These results clearly indicate that the glycolytic
metabolism is functional in JM101 and are in agreement
with a carbon flux deviation through PoxB for acetate pro-
duction that has been proposed for slow-growing JM101
derivatives such as PB11 that lacks PTS [12,13,19,20], and
in agreement with the overexpression of poxB, acs, and the
glyoxylate shunt genes in JM101 in these growing condi-
tions [12,13,19,20] (see below).

The pentose pathway, Entner-Doudoroff and gluconeogenic
metabolism in the upper glycolytic metabolism

Several gluconeogenic reactions are involved in the upper
glucose metabolism pathway to allow gluconeogenic me-
tabolism and the synthesis of G6P from glycerol (Figure 1).
Glycerol is incorporated as DAHP and this metabolite and
G3P are transformed into F1,6P. This compound is con-
verted to F6P, and later transformed into G6P. The fbaA,
fbaB and fbp genes involved in these gluconeogenic steps
were overexpressed in JM101 (Table 3, Additional file 1).
Interestingly, only edd and eda corresponding to the
Entner-Doudoroff pathway were overexpressed in the pen-
tose pathway (Table 3). The product of this last gene is
involved in the synthesis of G3P and PYR from 2-keto-3-
deoxy-D-gluconate-6-phosphate (KDPGNT) (Figure 1).

Acetate pathways, anaplerotic and other gluconeogenic
genes

The poxB, acs, actP and pta genes are involved in trans-
port, production and consumption of acetyl-phosphate
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(Ac-P) and acetate (Figure 1). poxB, acs and actP are over-
expressed in conditions of glucose starvation and are part
of the RpoS regulon [12,25,26,54]. These genes were also
overexpressed in JM101 grown on glycerol. Additionally,
the overexpression of aceB, aceA and glcB in these grow-
ing conditions suggests the induction of the glyoxylate
pathway (Table 3, Additional file 1). Since no acetate was
detected during the growth of JM101 on glycerol, it is pos-
sible that a fraction of the acetate was synthesized via PoxB
and in turn, this metabolite was transformed into AcCoA
by Acs, apparently inducing a gluconeogenic response
utilization of acetate by the glyoxylate shunt enzymes, as
has been proposed for strain PB11 [11,18]. To confirm this
hypothesis, strain JM101 with an inactivated poxB gene
(JM101ApoxB) grown on glycerol was evaluated. This de-
rivative accumulated acetate during fermentation and its pt
was reduced 10% as compared to the parental strain
(Table 2A), indicating a role of PoxB in acetate metabolism
growing on glycerol as the carbon source. In agreement,
the isocitrate lyase specific activity (Icl or AceA, one of
the glyoxylate shunt enzyme) was detected in JM101
grown on glycerol but not on glucose as the only carbon
source (Figures 1 and 5). The actP gene, which was also
overexpressed is part of the acs operon, is positively regu-
lated by CRP and can be transcribed by 54, 70 and 38
(RpoS) sigma factors [12,20,24,55]. Therefore, it appears
that since glycerol is a poor carbon source, part of the re-
sponse involved in carbon scavenging (including acetate
reutilization or recycling) is activated in this strain when
growing on glycerol. In agreement, genes involved in the
synthesis of pyruvate dehydrogenase were slightly
underexpressed in these growing conditions, indicating
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Figure 5 Specific activities of certain central metabolic enzymes of strain JM101 grown on glycerol, as compared to the same specific
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that part of the carbon flux is apparently directed and
recycled via PoxB/Acs and the glyoxylate shunt
[12,13,20,37,56,57]. The pckA gene was also highly over-
expressed and its coded protein was synthesized at high
levels in JM101 (Tables 3 and 4); consequently, the PckA
specific activity was higher on glycerol as compared to
glucose (Figure 5). The overexpression of this gene in
other E. coli strains grown on glycerol has been previ-
ously reported [8,58]. The pckA gene is regulated by
Cra, and PckA synthesizes PEP from oxalacetate (OAA),
with the production of ATP and CO,. OAA is an indis-
pensable metabolite for the TCA cycle regeneration and
it is precursor of aspartate (Figure 1). It appears that
when glycerol is used as the sole carbon source and the
proposed acetate-glyoxylate shunt and carbon recycling
program is running, PckA is apparently involved in the
gluconeogenic cycle. In accordance are the facts that
MaeB is an enzyme that utilizes NADPH, for converting
MAL to PYR, the maeB gene was not upregulated and
the specific activity of this enzyme was lower on glycerol
as compared to glucose, indicating a role of PckA in the
gluconeogenic pathway, in these growing conditions
(Figures 1 and 5). In agreement, pckA inactivation as
mentioned decreased 10% the p of the derivative strain
as compared to the parental strain (Table 2A). Interest-
ingly and in agreement with this acetate recycling pro-
posal, when JM101 was grown on a mixture of glycerol
plus acetate, the p of this strain was not enhanced; how-
ever, acetate was coutilized with glycerol (Table 1 and
Figures 2 and 3).

TCA cycle

The acnA and acnB genes were overexpressed in strain
JM101 grown on glycerol as compared to glucose
(Table 3, Additional file 1). These genes code for aconi-
tases A and B respectively, involved in the synthesis of
isocitrate (ICT) from citrate (CIT) (Figure 1). The acnA
gene is positively regulated by Crp, SoxRS, FNR and
repressed by ArcA [59], whereas acnB is positively regu-
lated by CRP and negatively regulated by ArcA, FruR
and Fis. AcnB appears to be the main catabolic enzyme
in E. coli and AcnA is apparently used in nutritional or
oxidative stress [60]. Moreover, overexpression of acnB
has been detected in strains growing on acetate as the
only carbon source [60]. Importantly, the transcription
level of icd was lower in JM101 grown on glycerol
(Table 3). Icd is regulated by phospho/dephosphorylation
and synthesizes a-KG and NADPH, from ICT. a-KG is an
important metabolite for glutamate biosynthesis (Figure 1).
Therefore, a possible flux reduction through Icd is in
agreement with the proposed of a reduction of the flux
in the lower section of the TCA cycle in JM101. How-
ever, this proposal is not in agreement with previous
reports of carbon fluxes in other E. coli strains where
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apparently carbon flux through Icd is slightly enhanced
when glycerol is used as carbon source as compared to
glucose [7]. The fumA and fumB genes were also over-
expressed in JM101, whereas fumC was underexpressed
(Table 3); in agreement, FumA was synthesized at
higher levels in this strain (Table 4). The fumA gene
transcription is positively regulated by Crp and
repressed by ArcA and its expression is predominant
under aerobic conditions. The fumB gene overexpres-
sion was unexpected since this gene is synthesized pre-
ferentially on anaerobic conditions. Interestingly, in
JM101 grown on glycerol, the frdABCD operon (encod-
ing the anaerobic fumarate reductase complex) was also
overexpressed (Table 3). The fumB gene is positively
regulated by FNR, ArcA, Crp and Fur and negatively by
Fis and NarL. The frdABCD operon is also positively
regulated by FNR and negatively by NarL. Remarkably,
the two-component signal system DcuS-DcuR induces
transcription of the dcuB-fumB operon, the frdABCD op-
eron, and dctA (C4 compounds transporter) in response
to external C4 compounds (SUC, FUM, MAL, and aspar-
tate) [61,62]. Importantly, JM101 grown on glycerol
enhanced its g when small quantities (0.005 g/L) of SUC
or MAL were included in the medium (Table 5), suggest-
ing a lower C4 compounds production when growing on
glycerol. From these results it can be concluded that at
least another signal is apparently involved in the overex-
pression of the frd operon and fumB in this strain grown
on glycerol. There was no substantial difference in the
expression of the sdhCDAB and sucABCD operons in
JM101 grown on glycerol as compared to glucose
(Table 3). However, the transcription of [pdA was under-
expressed. Among other roles, the product of this gene is
a component of the SucABCD complex involved in the
transformation of a-KG into SUC. These results suggest
that a lower carbon flux is probably present in the lower

Table 5 Specific growth rates (p) of strain JM101 cultures
grown on glycerol when C4 compounds and amino acids
(0.005 g/L) were included in the cultures

Condition u(h™

JM101 049 (+/-0.01)
JM101 + L-glutamine 0.55 (+/-0.02)
JM101 + L-glutamate 048 (+/-0.01)
JM101+ malate 0.57 (+/-0.02)
JM101+ succinate 0.55 (+/-0.02)
JM101+ L-arginine 0.50 (+/-0.01)
JM101+ L-aspartate 0.52 (+/-0.01)
JM101+ L-lysine 0.44 (+/-0.01)
JM101+ L-asparagine 0.50 (+/-0.01)
JM101+ citrate 045 (+/-0.01)




Martinez-Gémez et al. Microbial Cell Factories 2012, 11:46
http://www.microbialcellfactories.com/11/1/46

section of the TCA cycle including the Icd and SucA
enzymes in strain JM101 (Figure 1). These observations
are in agreement with the proposal that a gluconeogenic
carbon recycling process is occurring at some degree
(acetate conversion to malate and this last compound into
PEP), since reducing the transformation of ICT into a-KG
and the conversion of this metabolite into SUC-CoA (suc-
cinyl coenzyme A) induces carbon diversion through the
glyoxylate pathway, whose genes were overexpressed. This
proposal in turn allows the conservation of two carbon
atoms that are not lost as CO2 in the transformation of
ICT into a-KG and from this last compound into Suc-
CoA in the lower section of the TCA cycle, in JM101
grown on glycerol (Table 3, Figure 1).

Indole detection, ribonucleoside metabolism and aromatic
compounds production capacity in JM101 grown on
glycerol

TnaA was one of the proteins highly overproduced (17.03
X) in JM101 grown on glycerol (Table 4). This protein
(tryptophan indole-lyase) converts tryptophan into indole,
PYR and ammonia (Figure 1). TnaA specific activity was
measured at 1 OD and an increment of 400% was found in
glycerol compared to growth on glucose (Figure 5). Import-
antly, micromolar concentrations of indole were detected
only during growth on glycerol (Figure 6). Indole produc-
tion was detected when the biomass concentration was
around 0.1 g/L (0.3 OD). Indole production had two peaks;
one at 0.31 g/L in the growth curve (0.83 OD) and the
other at onset of stationary phase (Figure 6). The
JM101AtnaA derivative with a completely inactivated tnaA
gene, was evaluated in bioreactors and compared to J]M101
during growth on glycerol. No differences in the specific
growth rates were detected between the two strains (data
not shown). The final biomass concentration was lower for
JM101AtnaA compared to the parental strain (Figure 7).
Surprisingly, the JM101AtnaA derivative produced acetate
(0.37 g/L) and small amounts of lactate (0.037 g/L), and as
expected no indole was detected (Figure 7). Therefore, the
question is what could be the role of indole during the
growth of strain JM101 on glycerol? Interestingly, when
the first indole peak appeared, extracellular concentration
of glycerol was about 3 g/L, indicating that the signal oc-
curred early in the fermentation. The second peak
appeared when glycerol was almost exhausted in the
media. Therefore, it appears that this signal could be im-
portant for continuing exponential growth and to reach a
higher biomass at the end of fermentation. It is possible
that indole synthesis is part of an adaptive response during
different stages of the growth on glycerol cultures. One
scenario includes directing the carbon flux into DAHP as
a result of the glycerol gluconeogenic metabolism. The
synthesis of tryptophan, histidine, NAD and nucleotides
(purine and pirymidine) uses 5-phospho-D-ribosyl-a-1-
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pyrophosphate (PRPP) as a precursor (Figure 1). It appears
that about 30-40% of the synthesized PRPP is apparently
used for nucleotide synthesis and about 15% to produce
tryptophan [63]. It is possible that the continuous indole
production from tryptophan enhances PRPP demand and
this increases DHAP flux that is diverted through the pen-
tose-phosphate pathway (Figure 1). If tryptophan demand
is reduced in the strain lacking TnaA, the flux previously
diverted to the pentose pathway could be redirected
through glycolysis in this derivative. Under this scenario,
the TCA cycle was apparently incapable of coping with the
extra flux of AcCoA from PYR and this metabolite was
converted to acetate and lactate. A second not excluding
scenario that could also be involved in the observed indole
response is in agreement with the proposed signal role of
this metabolite. It is known that indole increases crl ex-
pression at both transcriptional and translational levels. In
turn, Crl stimulates the activity of RpoS, leading to
increased transcription rates of the RpoS regulon in the
exponential or stationary phase [41,64]. Mutants in the cr/
or rpoS gene exhibited low synthesis levels of FbaB, TalA,
PykE, PfkA, GItA and PoxB [41]. Therefore, one of indole
roles could be to activate, through Crl, the RpoS activity
and finally the genes implied in the balanced distribution
of the carbon flux. In these conditions, a lower production
of PoxB and TalA whose genes are transcribed by RpoS in
the strain JM101AtnaA could explain the higher glycolytic
flux in this derivative (Figure 1). An additional clue about
the distribution of the carbon flux in the pentose-phos-
phate pathway was the overproduction of Cdd (6.97X),
Udp (7.41X) and DeoD (2.08X) in JM101 (Table 4). These
proteins are involved in the degradation of nucleobases to
bases and pentoses. Under PRPP deficient production con-
ditions, the degradation of ribonucleosides is apparently
more important than their phosphorylation to nucleotides
[63]. Therefore, these data suggest that in JM101 grown
on glycerol, the ribose 5-P (R5P) levels are apparently
lower as compared to the strain grown on glucose, thus in-
dicating nucleotide recycling during growth on glycerol.
Indole production also suggested that carbon flux into
the aromatic amino acids pathway is increased in JM101
grown on glycerol. In agreement, the RT-qPCR values of
most of the genes coding for the common aromatic
pathway (aroH, aroF, aroB, aroD, aroE, arol) were
slightly overexpressed (Table 3). This capability of strain
JM101 to increase carbon flux into the aromatic pathway
when grown on glycerol, could explain the high effi-
ciency of production of aromatic compounds of this
strain when transformed with plasmid pJLBaroG™"tktA that
redirects carbon flux into the aromatic pathway [65-67].
The ]MlOl/p]LBaronb "tktA derivative grown on mineral
media with glycerol as the sole carbon source, produced

aromatic compounds with a high yield (Yaromatics/substrate)
of 0.66 mmolC/mmolC, as compared to the of yield of
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Figure 6 Biomass and indole concentration profiles of strain JM101 grown on glucose or on glycerol.

0.07 mmolC/mmolC that was obtained when this deriva-

tive was grown on glucose as the sole carbon source
(Table 6).

Conclusions

Overexpression of the genes and overproduction of
their coded proteins involved in glycerol uptake and
metabolism were detected. These proteins are respon-
sible for the transport and incorporation of glycerol as
DHAP, one of the metabolites of the glycolytic pathway.
Overexpression of several glycolytic and gluconeogenic
genes in the upper part of the glycolytic pathway, espe-
cially fbaA, fbaB, fbp and pgi, are responsible for the
production of G6P from DHAP. Low F1,6P/F6P levels
could be the signal for the induction of some of these
regulons when strain JM101 is growing on glycerol.
This phenomena is reinforced by the differential expression

of some genes regulated by Cra which respond to low
F1,6P concentrations.

The detected overexpression of the mal/lam and
mgl/gal regulons and the overproduction of their coded
proteins and some genes regulated by RpoS, indicate that
JM101 apparently induced a “carbon stress and carbon
scavenging response” when growing on glycerol as the
sole carbon source, indicating as reported that this
carbohydrate is a poor carbon source. This proposition is
in agreement with the involvement of RpoS, the master
regulator of stress response in glycerol fermentation,
since its inactivation reduced 10% the p and delayed by
two hours the growth of J]M101ArpoS.

The detected overexpression of poxB, acs, pta, actD,
acnB and the glyoxylate shunt genes (aceBA and glcB),
some of them transcribed by RpoS, indicates that JM101
is apparently producing and simultaneously consuming
acetate when growing on glycerol as the sole carbon
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source. In agreement with this proposal, was the result
that no acetate was detected when growing on glycerol,
and acetate can be coutilized with glycerol as carbon
sources. It has been proposed that when E. coli is grow-
ing slowly on glucose apparently reduces the carbon flux
through the Pdh system, which yields AcCoA directly
from PYR, and diverts part of the carbon flux via PoxB
that synthesizes acetate from PYR, with a concomitant
reduction of quinones at the membrane. Acetate, is then
utilized by Acs and transformed into AcCoA, apparently
creating a “carbon acetate recycling” mechanism which
is also apparently present in PB11 (a derivative of J]M101
lacking PTS) that grows slowly on glucose. Therefore, it
appears that in addition to the glycolytic metabolism that
is functioning in JM101 when growing on glycerol, car-
bon scavenging responses are also observed in this strain
when it grows on this poor carbon source. Consistent
with this proposed metabolic response, in JM101 cul-
tures grown on glycerol as mentioned, no acetate was
detected, because this strain probably recycles acetate
through the PoxB-Acs-glyoxylate shunt enzymes and is
capable of coutilizing glycerol and acetate. In accordance,
JM101 derivatives with inactive poxB or pckA genes
accumulated acetate and their specific growth rates were

affected. The induction of this mechanism apparently
permitted a more efficient carbon utilization and acetate
recycling in these growing conditions. In agreement, the
downregulation of icd and lpdA coding for IcdA and
LpdA (part of the SucABCD complex), supports the
proposition that the carbon flux is reduced through the
lower section of the TCA cycle, thus enabling carbon
gluconeogenic recycling through the glyoxylate shunt,
since aceBA and glcB were overexpressed. As a result, if
this hypothesis is correct, less carbon should be lost as
CO2 in the lower section of the TCA pathway.

In agreement with a reduced TCA cycle during the
growth of JM101 on glycerol, it appears that relatively low
production of C4 carbon metabolites occurred, given that
the p of this strain was enhanced in cultures grown on
glycerol when succinate, malate or aminoacids derived
from 2-oxoglutarate were added to the fermentation. This
supports the hypothesis that when E. coli grows slowly,
part of the carbon is recycled, preserved through the
glyoxylate shunt and not lost as CO2 in the TCA cycle.

Indole production in JM101 grown on glycerol indicates
an important carbon flux through the aromatic amino
acids pathway. Indole is a signaling molecule that activates
Crl for modulating the expression of certain RpoS-Crl
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Table 6 Aromatic compounds yields of strains JM101 and
JM101/pJLBaroG™"tktA in flask cultures with glucose or
glycerol as sole carbon sources

Strains Carbon source Yarom(mmolC/mmolC)
JM101 Glucose Not detected

IM101 Glycerol 0257 (+/-0.207%
IM101/pJLBaroG™" tktA Glucose 0.07 (+/-0.002)
IM101/pJLBaroG™"tktA Glycerol 0.66 (+/-0.005)

(See Methods).

regulons; however, a signaling role of this metabolite is not
completely clear at the moment. It has been proposed that
the expression of rpoS is not only negatively controlled by
cAMP-CRP high levels but also inversely correlated with
growth rate. Since glycerol is a relatively poor carbon
source, intracellular high levels of cAMP-CRP are
expected in JM101. Indole synthesis could stimulate RpoS
activity under these non favorable growth conditions. Add-
itional studies should be conducted to gain a better under-
standing into the role of this signal. Nevertheless, the
detected overproduction of Cdd, DeoD, and Upp suggests
that the carbon flux through the pentose-phosphate path-
way is reduced when glycerol is used as the sole carbon
source as compared to the flux when glucose is utilized. It
appears that when glycerol is used as the only carbon
source, a carbon stress mechanism occurs. In this condi-
tion, RpoS regulons could be also indirectly activated by
indole, allowing a more adequate response to growth on
carbon limited conditions. Importantly, and in agreement
with an increased carbon flux through the aromatic path-
way growing on glycerol when JM101 is transformed with
plasmid p]LBaronb "tktA that redirects and enhances car-
bon flux into the aromatic pathway, this strain showed a
yield increase of aromatic compounds almost 9-fold as
compared to the production of these metabolites when
glucose is used as the sole carbon source.

Table 7 Strains used in this report

Strains Relevant characteristics Source
E. coli IM101 F' traD36 proA+ proB+ laclq [23,67]
lacZ_M15/supE thi _(lac-proAB)
IM101AgalP JM101galP:tc This work
JM101Apck JM101pck:cat This work
JM101Appc JM101ppc:cat This work
JM101ApykA IM101pykA:cat This work
JM101ApykF IJM101pykF:cat This work
JM101AtnaA IJM1071tnaA:cat This work
JM101ApoxB JM101poxB:cat [19]
IM101ArpoS JM101rpoS:tc [68]
IM101/pJLBaroG™" tktA [65,66]
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The transcription levels of most of the measured genes
correlated with the detected values of the proteins pro-
duced in the analyzed growth conditions, using glycerol as
the only carbon source. Also, the specific activities of vari-
ous measured proteins correlated with these values.

In this contribution we described new features of E. coli
physiology during the growth on glycerol, as detected
through a proteomic-transcriptional study and kinetic-
stoichiometric evaluation of strain JM101 and some iso-
genic mutants in certain key PEP-PYR genes (poxB, ppc,
pckA, pykA and pykF) and in rpoS. It appears that when
glycerol is used as the sole carbon source in addition to
the glycolytic metabolism, a carbon stress response occurs
that includes carbon scavenging and acetate gluconeogenic
carbon recycling responses mediated mainly by RpoS. In
addition, this regulator could also be activated by Crl
through indole, allowing a more adequate response to
growth on glycerol, a carbon limited condition. The sim-
ultaneous utilization of various metabolic redundant al-
ternative mechanisms when growing on glycerol indicates
metabolic plasticity of E. coli. Understanding these cap-
acities advances the knowledge on the physiological
responses E. coli is capable of, and enhances our capaci-
ties for developing more advanced metabolic engineer-
ing strategies using this bacterium for the production of
specific metabolites.

Methods

Bacterial strains

Strain JM101 [23,67] and derivatives with specific inacti-
vated genes used in this work are listed in Table 7.

Genetic procedures and recombinant DNA techniques
PCR reactions were performed using Platinum Taq poly-
merase accordingly to the manufacturer’s recommenda-
tions (Invitrogen, USA). Complete inactivation of pck,
tnaA, pykA, pykF and ppc genes was performed by trans-
duction, using P1vir phage grown on strains from the Keio
collection [69] carrying these genes inactivated by the Dat-
senko method [70]. Gene inactivations were confirmed
using PCR reactions with specific oligonucleotides (data
not shown). Table 8 includes the oligonucleotides uti-
lized in this report.

Growth conditions

Batch cultures

M9 medium, containing (per liter): 6 g Na,HPOy 3 g
KH,POy4; 0.5 g NaCl; 1 g NH,Cl; 2 mM MgSOy; 0.1 mM
CaCl,; 0.01 g Vit B1, and 2 g/L glucose, was utilized for
growing the fermentor inocula. A higher concentration of
glucose or glycerol (4 g/L, approximately 130 mmolC/L, de-
pending on the molecular weight of the carbon source) was
utilized in the bioreactors or in 500 mL shake flask studies,
when only one carbon source was employed. When two
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Table 8 Oligonucleotides utilized in this report (gene
inactivations and RT-qPCR)

A. Oligonucleotides used for the detection of gene inactivations

pckA pckAFw CAG GAA TGC GAT TCC ACT CA
pckARv GTG CAG CGT ATC GTG GAT AA
ppc ppcFw GCA TCT TAT CCG ACC TAC AC
ppcRv GCC TGT AGC AGA GTA GAG AA
DyKA pykAFw CTG AAG GAA TCG CGT CGT TTT GA
pykARv CGG CGG ATG AAT GAA GAA
pykF pykFor ACA AGC ACA CAT TCC TCT GCA
pykRev AAA ACA GGA TGC TTC CAT CG
tnaA tnaAFw TTC TGT AGC CAT CAC CAG AG
tnaARv CCG GCA AGA TCA ACA GGT AA
galP galpAa CAT GTA TTA CGC GCC GAA AA
galpAb TGG CAA GTA CGT TGG TCA GG

B. Oligonucleotides used for RT-qPCR assays*

cpdA cpdAa CAG CAT TTC GCT GAA GGC AT
cpdaB GCA TCC TGT AAC GCG CTG TAC
glpD glpDa ATG GTG CTG GTA TCG CGG
glpDb TTT TGA ACT GGC GGA AGA GG
glpF glpFa AGG CCA GTG CAT TGC TGA AT
glpFb ACT GAC CAA AAG ACG CAC CAG
glpK glpKa CTC GAC CAT GTG GAA GGC TC
glpKb ACA CGG CCC TGA GTC ATT TT
pntA pntAa AAC CAG CGC CGA AGC TAATT
pntAb GTA TTC ACA GTT GCC GCC GT
udhA udhAa AAG GCT GTG ACG ATG GTG TG
udhAb CGA ATC GGT ATT ACC GGT GC

* Oligonucleotide sequences of the remaining utilized genes in Table 3 have
been published elsewhere [12,13,19,20,68].

carbon sources were used, the same amount of each carbon
source (2 g/L, approximately 65 mmolC/L) was employed.
When acetate was added as carbon source, the concentra-
tion employed was 0.33 g/L (approximately 11 mmolC/L).
Derivative ]MlOl/p]LBaroGﬂ’ "tktA [65,66] was also grown
in 500 mL shake flasks using glycerol or glucose as sole car-
bon sources. IPTG (0.1 mM) was added at the beginning of
the fermentation. Tetracycline (30 pg/mL) was included in
the medium for plasmid maintenance. Samples from these
cultures were obtained during the whole fermentation
process. Cells were centrifuged and analyzed for the pro-
duction of aromatic compounds as described below.

Bioreactor conditions

Strain JM101 was cultivated in a 1 L bioreactor (Appli-
kon Biotechnology, Netherlands) with a working volume
of 0.75 L, 600 rpm, pH controlled at 7 with NH,OH
(2.0%), and air flow rate of 1 vvm, starting at an ODgqg
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of 0.10 and collected when growing in the log phase at
an OD6OO of 1.

Kinetic and stoichiometric parameters

Data represent the average of at least three different
cultures. Cell growth was measured by monitoring the
optical density at 600 nm (ODgqp) in a spectrophotom-
eter (Beckman DU700). ODgoo was converted into dry
cellular weight (biomass concentration) using a stand-
ard curve (1 ODgpo=0.37 g/L of dry cellular weight).
Specific growth rates () were determined by fitting
the biomass data versus time to exponential regres-
sions. The biomass yield (Yx/s) was estimated as the
coefficient of linear regression of biomass concentra-
tion versus substrate concentration of glucose and gly-
cerol, in grams of biomass/mmolC of substrate. The
specific carbon consumption rate (qs) was determined
as the ratio of p to Yy, according to Monod’s model
reported elsewhere [19,71]. The aromatic compounds
yield presented in Table 6 was estimated as the sum of
the total production of 3-deoxy-D-arabinoheptulosonate-
7-phosphate (DAHP), dehydroshikimate (DHS), shikimate
(SHIK) and indole in mmolC divided by the total carbon
source consumed in mmolC of substrate. L-tryptophan,
L-phenylalanine and L-tyrosine were not detected in these
fermentations.

Analytical methods

Metabolite concentrations were determined with an HPLC
system (600E quaternary bomb, 717 automatic injector,
2410 refraction index, and 996 photodiode array detectors
(Waters, USA). An Aminex HPX-87 H column (300 by
7.8 mm; 9 Am) (Bio-Rad Laboratories, USA) was used.
Running conditions were: mobile phase, 5 mM H,SOy;
flow, 0.5 mL/min, and temperature, 50°C. Under these con-
ditions, D-glucose, D-glycerol, DAHP, DHS, SHK, acetate
and lactate were detected by refraction index [71]. Indole
and the aromatic aminoacids L-tryptophan, L-phenylalanine
and L-tyrosine in culture supernatants were quantified
using an Agilent 1100 high-performance liquid chromatog-
raphy system (Agilent Technologies, USA) equipped with a
Phenomenex Synergy Hydro RP18 column (150 by 4.6 mm;
4 um) attached to an Agilent 1100 electrospray mass spec-
trometry detection system (Agilent Technologies, USA)
[72]. Samples were eluted with 10% methanol in 0.1% acetic
acid in water at an isocratic flow rate of 0.5 mL/min. UV
detection was performed at 220 nm. A dual solvent system,
at a column flow rate of 1.0 mL/min, was used for separ-
ation [73]. Solvent A consisted of 0.1% trifluoroacetic acid
in water, while solvent B was 0.1% trifluoroacetic acid in
acetonitrile. Starting conditions were: 95% solvent A and
5% solvent B, the solvent gradient was run for 8 min and
ended at 20% solvent A and 80% solvent B. From minutes
8-10, the ratio was maintained at 20% solvent A and 80%
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solvent B. From minutes 10 to 15, the ratio was 95% solvent
A and 5% solvent B.

RNA extraction, DNAse treatment of RNA and cDNA
synthesis for RT-qPCR analysis

Sample management and treatment

Strain JM101 was grown in different bioreactors using
glycerol or glucose (as the control) as carbon sources.
After the bioreactor was inoculated at the same optical
density (0.1), the culture was monitored to verify and
reproduce the (1, g5 and Y,/s values. When the fermenta-
tion reached 1 OD, 7 mL samples were taken directly
from the bioreactor using a 1 mm diameter pipe and
collected in 15 mL cap tubes containing 2 mL of RNA
protect Bacteria Reagent (QuiagenTM, Netherlands) and
mixed carefully. After 1 min, the samples were centri-
fuged at 8,000 rpm for 8 min. The pellet was immedi-
ately frozen at -70°C until RNA extraction.

Nucleic acid extraction

Total RNA was isolated and purified using the hot-phe-
nol method, with some modifications. Samples contain-
ing 7 mL of the collected frozen cells were resuspended
in 1 mL buffer I (0.3 M sucrose, 0.1 M sodium acetate),
treated with 20 pL lysozyme (10 mg/mL in TE buffer)
and incubated for 10 min at room temperature. 2 mL
buffer II (0.01 M sodium acetate, 2% SDS) were added
and the mixture was incubated for 3 min at 65°C. The
lysate was extracted with 2 mL of hot phenol and heated
for 3 min at 65°C. A second extraction with hot phenol
was performed without heating the mixtures. Samples
were then extracted with 2 mL of a phenol:chloroform
mixture (1:1), precipitated with 0.1 volume of 3 M so-
dium acetate (pH, 5.2) and 2.5 volume of ethanol and
centrifuged for 15 min at 4°C, 10,000 rpm. Samples were
then suspended in a volume containing 300 pL of
DNAse and RNAse-free water (Ambion Inc, USA) with
RNAse inhibitor (Thermo-Scientific, USA) and extracted
twice with 1 volume of chloroform. Finally, samples were
precipitated as before and suspended in 300 uL TE buffer
(Ambion Inc, USA). RNA was analyzed on formaldehyde
agarose gel for integrity. RNA concentrations were quan-
tified using Nanodrop 2000c (Thermo Scientific, USA);
the 260/280 and 260/230 ratios were examined for pro-
tein and solvent contamination. For all samples, the 260/
280 nm absorbance values were between 1.9-2.0 and in
the range of 2.0-2.3 for the 260/230 nm ratio. RNA sam-
ples were stored at -70°C. For DNAse treatment, total
RNA samples were treated with Turbo DNA-free kit
(Ambion Inc, USA) at 37°C for 30 min, following manu-
facturer’s instructions. To determine whether RNA sam-
ples were significantly contaminated with genomic DNA,
samples were subjected to conventional PCR with pri-
mers for the arcA gene [12,13]. Since these primers were
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designed to recognize genomic DNA, the presence of a
detectable PCR product on an ethidium bromide-stained
agarose gel would indicate that the specific RNA sample
was contaminated with genomic DNA. PCR reactions
were performed with Taq polymerase (Thermo-Scientific,
USA). The cycling parameters were: 95°C for 5 min; 30
cycles at 95°C for 1 min, 55°C for 1 min and 72°C for
1 min, plus an extension step at 72°C for 5 min. Add-
itionally, DNAse-treated RNA samples were used for
RT-qPCR analysis of the same arcA gene, using the ap-
propriate oligonucleotides [arcAa (forward) and arcAb
(reverse)] [12,13]. As in the PCR case, all utilized sam-
ples did not produce a 101 bp amplimer, indicating that
small fragments of genomic DNA contaminating the
samples were not present. cDNA was synthesized using
RevertAid™ H minus first strand ¢cDNA synthesis kit
and following the manufacturer’s conditions (Thermo-
Scientific., USA). For each reaction, approximately 5 pg
of RNA and a mixture of 10 pmol/uL of specific DNA
reverse primers (b primers) for each measured gene were
used. Nucleotide sequences of these genes have been
previously published [12,13,24,72] or are listed in Table 8.
c¢DNA were used as template for RT-qPCR assays.

RT-gPCR
RT-qPCR was performed with the ABI Prism 7000 Se-
quence Detection System and 7300 Real Time PCR Sys-
tem (Perkin Elmer/Applied Biosystems, USA) using the
Maxima® SYBR Green/ROX qPCR Master Mix (2X) kit
(Thermo-Scientific, USA). MicroAmp Optica 96-well re-
action plates (Applied Biosystems, USA) and Plate Max
ultraclear sealing films (Axygen Biosciences, USA) were
used in these experiments. Amplification conditions were
10 min at 95°C, followed by a two-step cycle at 95°C for
15 s and 60°C for 60 s for a total of 40 cycles, to finish
with a dissociation protocol (95°C for 15 s, 60°C for
1 min, 95°C for 15 s and 60°C for 15 s). DNA sequences
of the primers for specific amplifications were designed
using the Primer Express software (Applied Biosystems,
USA). Some of these have been previously published
[12,13,24] and the rest of the sequences are included in
Table 8. All RT-qPCR experiments complied with the
MIQE guidelines (Minimum Information for Publication
of Quantitative Real-Time PCR Experiments) [74,75].
The length of all the utilized oligonucleotides (forward
and reverse), was between 18 and 21 nucleotides, with
GC% between 45 to 60 and Tm between 58 to 60°C. The
size of all amplimers was 101 bp. The final primer con-
centration was 0.2 uM in a total volume of 12 pL. Five
ng of target cDNA for each gene were added to the reac-
tion mixture, since higher c¢DNA concentrations
(>10 ng) are not in the dynamic range of the reference
gene ihfB (see below). Hence the obtained values cannot
be correctly normalized for this higher ¢DNA
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concentration. All experiments were performed at least
in triplicate for each gene of each strain, obtaining very
similar values (differences <0.3 SD). A non-template
control reaction mixture was included for each gene and
values appeared for all genes, after cycle 31. Standard
curves were built to evaluate PCR efficiency and all the
genes had R* values above 0.9976 with slopes between
-34 to-3.7. The quantification technique used to
analyze data was the 2729 method described by Livak
and Schmittgen [76]. Data were normalized using the
ihfB gene as an internal control (reference gene). The
same reproducible expression level of this gene was
detected in all the strains in the conditions in which bac-
teria were grown and analyzed; this is the most import-
ant characteristic that a reference gene should have in
accordance with the MIQE guidelines. Supporting infor-
mation (Additional file 2) presents the i/ifB gene values
detected for the utilized strains. These results demon-
strate the stability of the expression of this reference
gene in all the analyzed derivatives for the conditions
used in this report and also on previous reports utilizing
these strains and other derivatives [12,13,24,74]. For each
analyzed gene in all strains, the transcription level of the
strain JM101 was considered equal to one, and it was
used as control to normalize the data. Therefore, data are
reported as relative expression levels, compared to the ex-
pression level of the same gene in strain JM101. The
results presented in Table 3 are the averages of at least
three independent measurements of the RT-qPCR expres-
sion values for each gene. Values were obtained from dif-
ferent cDNAs generated from at least five independent
bioreactor samples [13].

Enzymatic assays

For each enzymatic assay, approximately 15 mL of cul-
tures were harvested and centrifuged at 10,000 rpm, 4°C
for 1 min. The pellets were stored at —20°C until the en-
zymatic assay was performed (not further than two days).
Before each assay, the pellets were dissolved in their cor-
responding enzyme specific buffers (see below). Dis-
solved cells were disrupted by three sonication steps with
20 s intervals at 14 milliohms. Cell debris was removed
by centrifugation at 10,000 rpm, 4°C for 10 min. Enzym-
atic assays were performed at 30°C using a Thermo Spec-
tronic-Biomate spectrophotometer. The buffer and
substrates were mixed in a spectrophotometric cuvette to
a final reaction volume of 1 mL. The wavelength and
millimolar extinction coefficients for NADH,, NADP*
and NADPH, were 340 nm and 6.22 cm™' mM™}, re-
spectively. For phenylhydrazine-HCI, the wavelength and
millimolar extinction coefficients were 324 nm and
16.8 cm™" mM™}, respectively. One unit of specific en-
zyme activity (U) was defined as the amount of enzyme
required to convert 1 mole of substrate into the specific
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product per minute per milligram of protein. The amount
of protein was measured by the Bradford method with
bovine serum albumin as the standard [77]. Utilized buf-
fers: Pyruvate kinase (Pyk): 100 mM Tris—HCI (pH, 7.5),
5 mM ADP, 1 mM DTT, 10 mM KCl, 15 mM MgCl,,
0.5 mM phosphoenolpyruvate (PEP), 0.25 mM NADH,,
10 U lactate dehydrogenase (Ldh) [78]. PEP carboxylase
(Ppc): 60 mM Tris—HCl (pH, 9.0), 10 mM MgCl,,
10 mM NaHCOs, 0.15 mM NADH,, 5 mM PEP and 2U
of malate dehydrogenase (Mdh) [79]. PEP carboxykinase
(PckA): 10 mM TES Buffer (pH, 6.6), 10 mM MgCl,,
5 mM MnCl,, 1 mM DTT, 10 mM ADP, 75 mM
NaHCOs;, 0.3 mM NADH, and 20 U of Mdh; in this case
one must add cell extract, incubate at 37°C for 15 min,
then add 10 mM PEP to start the reaction [79]. Malic en-
zyme (MaeB): 100 mM Tris—HCI (pH, 7.8), 5 mM MgCl,,
0.6 mM NADP*, 40 mM malate [79]. Isocitrate lyase
(Icl): 50 mM morpholipepropanesulfonic acid (MOPS;
pH, 7.3), 1 mM EDTA, 5 mM MgCl,, 4 mM phenylhy-
drazine HCI (FH) and 12.5 mM L-isocitrate [80]. Isoci-
trate dehydrogenase (Icdh): 50 mM phosphate buffer (pH
7.5), 5 mM MgCl,, 2 mM NADP", 2.5 mM D,L isocitrate
[81]. Tryptophanase (TnaA): 1000 mM potassium phos-
phate (pH, 8.3), 0.81 mM pyridoxal 5-phosphate,
50 mM L-tryptophan (pH 10.8), trichloroacetic acid
6.1 N, toluene, p-dimethylaminobenzaldehyde solution
5%(w/v), hydrochloric acid-alcohol 895 mM [82].

Proteomic analysis

Protein extraction and two-dimensional gel electrophor-
esis were carried out as previously described [83]. Gels
were dyed in colloidal Coomassie [84] and scanned in a
GS-800 densitometer (Bio-Rad Laboratories, CA). Digital
images were analyzed and compared using the PDQuest
8.0.1 software from the same company. Each experiment
was done in triplicate. Only reproducible phenotypes, with
a Student’s  test value p <0.05 are shown. Additional file 3
contains other important proteomic parameters. Once the
digital image of each gel was compared against the rest,
the electrophoretic entities of interest were cut, alkylated,
reduced, digested and automatically transferred to a
MALDI analysis target by a Proteineer SP II and SP robot
using the SPcontrol 3.1.48.0 v software (Bruker Daltonics,
Germany), with the aid of a DP Chemicals 96 gel digestion
kit (Bruker Daltonics, Germany) and processed in a
MALDI-TOF Autoflex (Bruker Daltonics, Germany) to
obtain a mass fingerprint. One hundred satisfactory shots
were performed in 20 shotsteps; the peak resolution
threshold was set at 1500, the signal/noise ratio of toler-
ance was 6, and contaminants were not excluded. The
spectrum was annotated by the flexAnalysis 1.2 v SD1
Patch 2 (Bruker Daltonics, Germany). The search engine
MASCOT [85] was used to compare the fingerprints
against the UNIPROT [86] release 2011-01 database with
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the following parameters: Taxon- Escherichia coli, mass
tolerance of up to 200 ppm, one miss-cleavage allowed.
Carbamidomethyl was the fixed modification and oxida-
tion of methionine the variable modification.

Additional files

Additional file 1 Central metabolic genes overexpressed or
underexpressed during growth on glycerol as compared to glucose.
Certain regulators involved in the expression of these genes are also
included.

Additional file 2 This figure includes the positions of the amplification
curves for the ihfB gene and the Ct values of this gene (see Methods), in
the different strains employed in this study. As can be seen, all the
amplification curves of the ihfB gene, which has been used as the
reference gene, show very similar values. The values presented in the
table are from five different fermentations of each strain. These results
demonstrate that the same reproducible expression levels are obtained
for the ihfB gene in all strains. This is the most important characteristic
that a reference gene should have in accordance with the MIQE
guidelines [13,74]. These results corroborate the stability of the expression
of the reference ihfB gene in these strains under the utilized conditions.

Additional file 3 This file contains important proteomic parameters for
the identified proteins (Gi, Score, Mw, pl, %cov, EC number and gene ID).
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