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Abstract

Background: Among other advantages, recombinant antibody-binding fragments (Fabs) hold great clinical and
commercial potential, owing to their efficient tissue penetration compared to that of full-length IgGs. Although
production of recombinant Fab using microbial expression systems has been reported, yields of active Fab have
not been satisfactory. We recently developed the Corynebacterium glutamicum protein expression system
(CORYNEX®) and demonstrated improved yield and purity for some applications, although the system has not been
applied to Fab production.

Results: The Fab fragment of human anti-HER2 was successfully secreted by the CORYNEX® system using the
conventional C. glutamicum strain YDK010, but the productivity was very low. To improve the secretion efficiency,
we investigated the effects of deleting cell wall-related genes. Fab secretion was increased 5.2 times by deletion of
pbp1a, encoding one of the penicillin-binding proteins (PBP1a), mediating cell wall peptidoglycan (PG) synthesis.
However, this Δpbp1a mutation did not improve Fab secretion in the wild-type ATCC13869 strain. Because
YDK010 carries a mutation in the cspB gene encoding a surface (S)-layer protein, we evaluated the effect of ΔcspB
mutation on Fab secretion from ATCC13869. The Δpbp1a mutation showed a positive effect on Fab secretion only
in combination with the ΔcspB mutation. The ΔcspBΔpbp1a double mutant showed much greater sensitivity to
lysozyme than either single mutant or the wild-type strain, suggesting that these mutations reduced cell wall
resistance to protein secretion.

Conclusion: There are at least two crucial permeability barriers to Fab secretion in the cell surface structure of
C. glutamicum, the PG layer, and the S-layer. The ΔcspBΔpbp1a double mutant allows efficient Fab production
using the CORYNEX® system.
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Background
Recombinant antibody technologies can generate special-
ized whole antibodies or fragments with a myriad of po-
tential therapeutic, diagnostic, and research applications
[1]. Antibody fragments are particularly promising for cli-
nical application because their ability to penetrate tumor
cells is higher than full-length IgGs [2]. The fragment
antigen-binding (Fab) molecule contains a fragmented
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heavy chain (HC) composed of the variable (VH) and the
first constant (CH1) domains and a light chain (LC) com-
posed of the light variable (VL) and constant (CL) domains.
Production of recombinant Fab using microbial expression
systems has been reported for several species, including
Escherichia coli [3-8], Pichia pastoris [9-12], and Saccharo-
myces cerevisiae [13], but yields of active Fab have not
been satisfactory.
Corynebacterium glutamicum is a Gram-positive, non-

pathogenic soil bacterium [14,15] that has been used for
industrial-scale production of amino acids such as gluta-
mate and lysine for several decades [16,17]. C. glutamicum
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Figure 1 Schematic diagram of the co-expression cassette of
Fab(H+L) in pPKStrastFabHL. The Fab(H+L) expression plasmid
pPKStrastFabHL was constructed as described in Methods. The HC and
LC genes of the anti-HER2 Fab fragment (shaded bars) fused with the
signal peptide of CspA from C. ammoniagenes (open bars) were
expressed under control of the cspB promoter from C. glutamicum
(thick arrows).
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produces only small amounts of endogenous extracellular
proteins compared with many other bacteria commonly
used for protein production, a great advantage for protein
purification. Thus, C. glutamicum is one of the most ac-
cessible and convenient bacterial species for biotech-
nology, but has not been used extensively for industrial
production of proteins. We recently demonstrated that
many heterologous proteins can be efficiently secreted in
active form by the C. glutamicum ATCC13869 strain.
Using a strong cspB promoter and signal peptides derived
from a corynebacterial cell surface protein and the Esche-
richia coli twin-arginine translocation pathway, C. gluta-
micum ATCC13869 exhibited great potential as a host for
industrial-scale production of recombinant proteins
[18-24]. This protein expression system has been awarded
trademark registration as CORYNEX®.
Corynebacterium glutamicum has a thick cell wall com-

posed of two layers. The inner layer consists mainly of
peptidoglycan (PG) and the outer layer mainly of mycolic
acid. The presence of the outer layer may confer resistance
against lytic enzymes, such as egg white lysozyme that
catalyze hydrolysis of the β-1,4 glycosidic bond between
the N-acetylglucosamine and N-acetylmuramic acid of PG
[25], although this bacterium belongs to the Gram-
positive category. This resistance is probably due to the
function of the outer layer as a protein permeability
barrier [26-29].
PG is synthesized on the outer surface of the cytoplas-

mic membrane by enzymes that bind to and are inhibited
by β-lactam-type antibiotics such as penicillin (so that
these enzymes are classified as penicillin-binding proteins,
PBPs). In general, PBPs are membrane-bound proteins
essential for cell wall synthesis by bacteria. They are
classified into two types, high-molecular-weight PBPs
(HMW-PBPs) and low-molecular-weight PBPs (LMW-
PBPs). Further, HMW-PBPs are classified into class A
HMW-PBPs having both a transpeptidase activity domain
for crosslinking PG moieties and a transglycosylase activ-
ity domain for forming a polysaccharide chain, and class B
HMW-PBPs having only a transpeptidase activity domain
[30]. It is known that the class A HMW-PBPs of C. gluta-
micum are responsible for cell elongation, whereas the
class B HMW-PBPs are responsible for formation of PG
of septal walls at the time of cell division [30,31]. LMW-
PBPs have D,D-carboxypeptidase activity and/or endopep-
tidase activity.
Several C. glutamicum strains have a surface (S)-layer

outside the normal cell wall. The S-layer of many bacteria
consists of a single protein assembled in two-dimensional
paracrystalline arrays. The protein CspB (also called PS2)
has been identified as a major secreted protein of several
C. glutamicum strains [32,33] and forms the S-layer [34]
in this species. Because of its location, the S-layer is gener-
ally involved in interactions between the bacterial cell and
its environment. The S-layers of several pathogenic bac-
teria have been reported to act as virulence factors by con-
ferring resistance to bactericidal activity [35,36] and by
adhering to the extracellular matrix proteins of the host
[37]. Furthermore, the S-layer can serve as a molecular
sieve and act to stabilize the bacterial cell envelope of both
pathogenic and non-pathogenic bacteria [38].
In the present study, we attempted to produce recom-

binant Fab using the C. glutamicum protein expression
system CORYNEX®, but productivity was extremely low.
We screened for mutations affecting the efficiency of
Fab secretion and found that mutations in certain cell
wall-related proteins enhanced Fab secretion, possibly by
removing a physical and chemical barrier to secretion.
This finding suggests that cell wall structures form a
bottleneck for efficient recombinant Fab production in
this expression system. The improved CORYNEX® sys-
tem may enable industrial-scale Fab production.

Results
Secretion of antibody Fab fragments by C. glutamicum
YDK010
Secretion of the Fab(H+L) fragment of the anti-HER2
antibody “trastuzumab”, used for targeted therapy of
HER2+ breast cancer, was first assessed in the YDK010
strain. Bacteria were transformed with the pPKStrast-
FabHL plasmid containing HC and LC genes of the Fab
region fused with the signal peptide derived from the cspA
gene of C. ammoniagenes under the control of the cspB
promoter of C. glutamicum (Figure 1 and Additional
file 1: Figure S1). The transformant was then cultured in
4 ml of MMTG medium at 30°C for 96 h and the culture
supernatant was analyzed by non-reducing SDS-PAGE
and Western blotting with anti-human IgG(H+L) anti-
body. A secreted protein of about 45 kDa, corresponding
to the molecular weight of Fab(H+L), was detected in the
culture supernatant (Figure 2). This band was subjected to
N-terminal amino acid sequencing, and, as expected, the
N-terminal amino acid sequences of both HC (EVQLV)
and LC (DIQMT) of the Fab(H+L) were detected. This re-
sult indicated that the signal peptide of CspA fused to



Figure 2 Production of Fab(H+L) by C. glutamicum YDK010 carrying pPKStrastFabHL. Supernatant proteins were separated by nonreducing
SDS-PAGE. Ten microliters of supernatant mixed with an equal volume of sample buffer were loaded into each lane. (a) A gel stained with SYPRO
Orange; (b) Western blot of supernatant proteins probed with anti-human IgG(H+L) antibody. Lane 1, YDK010/pPK4 (empty vector); lane 2,
YDK010/pPKStrastFabHL. HC, heavy chain; LC, light chain; M, molecular weight marker.
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both HC and LCs had been correctly processed for se-
cretion and that HCs and LCs formed a heterodimer in
the culture supernatant. However, accumulation of Fab
(H+L) in the culture supernatant was barely detectable
by Coomassie brilliant blue (CBB) staining. The secreted
Fab yield was estimated to be approximately 11 mg/l.
Protein bands of about 24 and 21 kDa, corresponding to
the monomeric HCs and LCs, respectively, were also
detected. Indeed, these bands had the expected N-
terminal amino acid sequences of HC and LC. Other
minor protein bands at 34–37 kDa were detected and
may represent degradation products of Fab(H+L).

Enhanced Fab secretion in the pbp1a deletion mutant
C. glutamicum YDK010
To improve the productivity of Fab(H+L) by the C. gluta-
micum YDK010 strain, we first investigated the effects of
PBP gene deletion on the Fab secretion, as the PG layer
synthesized by PBPs could function as a barrier to Fab
secretion. Genome sequence data suggest that C. glutami-
cum has at least nine PBPs, of which the class A HMW-
PBPs PBP1a and PBP1b and the class B HMW-PBPs
PBP2a, PBP2b, and FtsI (PBP3) are major PG synthases
[30]. Of these, only FtsI is essential for C. glutamicum
growth [39], whereas the other four HMW-PBPs are dis-
pensable [30]. The LMW-PBPs PBP4, PBP4b, PBP5, and
PBP6 were characterized as carboxypeptidases and lacta-
mases on the basis of sequence similarity analysis [30]. In
this study, we investigated the effects of deleting each of
these nonessential HMW-PBPs on Fab(H+L) secretion
(Figure 3). Deletion of pbp1a, encoding the class A PBP1a,
resulted in approximately 5.2 times higher secretion of
Fab(H+L) than in the parent strain. In contrast, deletion
of pbp1b had no effect on Fab(H+L) secretion. Similarly,
deletion of pbp2a and pbp2b individually did not increase
Fab(H+L) secretion (data not shown).

Effect of cspB mutation on secretion of Fab(H+L)
To confirm the positive effect of the Δpbp1a mutation on
Fab(H+L) secretion, we evaluated the effect of Δpbp1a on
the wild-type genetic background ATCC13869. Unexpec-
tedly, Δpbp1a had no effect on Fab(H+L) secretion from
ATCC13869 (Figure 4, lanes 2 and 4). It is known that
during YDK010 strain construction, the cspB gene en-
coding the S-layer protein CspB is deleted [40]. We
speculated that the cspB mutation was somehow involved
in allowing Fab(H+L) secretion and investigated Fab
secretion in both ΔcspB ATCC13869 [41] and the
ΔcspBΔpbp1a double mutant ATCC13869. The ΔcspB
single mutation only slightly affected Fab(H+L) secretion
(Figure 4, lane 3), but the combined ΔcspBΔpbp1a muta-
tion markedly enhanced Fab(H+L) secretion compared
with both the single mutants and the wild type (Figure 4,
lane 5). Thus, Δpbp1a increases Fab(H+L) secretion only
in the presence of the ΔcspB mutation. In contrast, the
Δpbp1b single mutation and the ΔcspBΔpbp1b double
mutation did not affect Fab(H+L) secretion (Figure 4,
lanes 6 and 7), coherent with the results from the experi-
ment on YDK010 strain. The Δpbp1a mutation increased
Fab secretion 5.2 times (11.1 mg/l→ 57.6 mg/l) in the



Figure 3 Effect of Δpbp1a or Δpbp1b mutation on Fab
secretion by C. glutamicum YDK010 strain. Supernatant proteins
were separated by non-reducing SDS-PAGE followed by SYPRO
Orange staining. Ten microliters of supernatant mixed with an
equal volume of sample buffer were loaded into each lane. Lane 1,
YDK010/pPK4 (empty vector), lane 2, YDK010/pPKStrastFabHL;
lane 3, YDK010Δpbp1a/pPKStrastFabHL; lane 4, YDK010Δpbp1b/
pPKStrastFabHL; M, molecular weight marker. Mutation Δpbp1a but
not Δpbp1b markedly increases Fab secretion from YDK010. The
data shown represent three independent experiments that yielded
similar results.

Figure 4 Effects of Δpbp1a and ΔcspB mutations on Fab
secretion by C. glutamicum wild-type strain ATCC13869.
Supernatant proteins were separated by nonreducing SDS-PAGE
followed by SYPRO Orange staining. Ten microliters of supernatant
mixed with an equal volume of sample buffer were loaded into each
lane. Lane 1, ATCC13869/pPK4 (empty vector); lane 2, ATCC13869/
pPKStrastFabHL; lane 3, ATCC13869ΔcspB/pPKStrastFabHL; lane 4,
ATCC13869Δpbp1a/pPKStrastFabHL; lane 5, ATCC13869ΔcspBΔpbp1a/
pPKStrastFabHL; lane 6, ATCC13869Δpbp1b/pPKStrastFabHL; lane 7,
ATCC13869ΔcspBΔpbp1b/pPKStrastFabHL; M, molecular weight
marker. The Δpbp1a mutation increases Fab secretion only in the
presence of ΔcspB (ΔcspBΔpbp1a double mutant). The data shown
represent three independent experiments that yielded similar results.

Table 1 Fab production yields by test tube culture

Strain Fab production yield (mg/l)

YDK010 11.1 ± 0.3

YDK010Δpbp1a 57.6 ± 2.3

YDK010Δpbp1b 10.6 ± 0.5

ATCC13869 6.4 ± 0.4

ATCC13869ΔcspB 8.9 ± 0.8

ATCC13869Δpbp1a 2.2 ± 0.4

ATCC13869ΔcspBΔpbp1a 34.9 ± 1.8

ATCC13869Δpbp1b 8.1 ± 1.1

ATCC13869ΔcspBΔpbp1b 7.9 ± 1.3

The amount of secreted Fab in culture supernatant was quantified as
described in Methods. Yields represent the average of measurements from
three separate test tube cultures.
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YDK010 strain and 3.9 times (8.9 mg/l→ 34.9 mg/l) in
the ATCC13869ΔcspB strain (Table 1). The YDK010 strain
probably carries an unknown mutation that also affects
the Fab secretion in the YDK010 background.

Effect of cspB and pbp1a mutations on the lysozyme
sensitivity of C. glutamicum
Both CspB and PBP1a are cell wall proteins, and thus,
these mutations may affect cell surface integrity. To assess
the effects on cell surface integrity, we examined the lyso-
zyme sensitivity of each mutant strain, ATCC13869 WT,
ΔcspB, Δpbp1a, ΔcspBΔpbp1a, Δpbp1b, and ΔcspBΔpbp1b,
by growth assay in LB liquid medium. All strains exhibited
similar growth rates under control conditions (Figure 5a).
When 25 μg/ml lysozyme was added to exponentially
growing cultures, growth of the wild-type strain was not
affected, indicating strong lysozyme resistance (Figure 5b).
In contrast, the growth rates of both ΔcspB and Δpbp1a
single mutants decreased gradually during lysozyme
treatment, resulting in lower final growth yields. The
ΔcspBΔpbp1a double mutant showed higher sensitivity to
lysozyme than did the Δpbp1a and ΔcspB single mutants
(Figure 5b). These results suggest that the ΔcspB and
Δpbp1a mutations affect cell surface integrity and that
the two mutations act together to disrupt cell surface
integrity and enhance lysozyme sensitivity. In contrast,
the Δpbp1b single mutant showed higher lysozyme sen-
sitivity than the Δpbp1a mutant, which was comparable
to the ΔcspBΔpbp1b double mutant. However, no



Figure 5 Lysozyme sensitivity of C. glutamicum strains.
(a) C. glutamicum wild-type strain ATCC13869 (open circle),
ATCC13869Δpbp1a (closed circle), ATCC13869ΔcspB (closed triangle),
ATCC13869ΔcspBΔpbp1a (closed diamond), ATCC13869Δpbp1b
(closed square), and ATCC13869ΔcspBΔpbp1b (X) were incubated in
LB medium at 30°C. (b) Lysozyme (final concentration 25 μg/ml) was
added to the cultures at the time indicated by an arrow. Growth
was monitored by measuring OD660. The ΔcspBΔpbp1a double
mutation considerably increased lysozyme sensitivity compared with
either mutation alone or the wild-type strain. The Δpbp1b mutation
showed higher lysozyme sensitivity than Δpbp1a mutation, but had
no synergistic effect with ΔcspB mutation.
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synergistic effect was observed between ΔcspB and
Δpbp1b mutations.

Antigen-binding activity of Fab secreted by C. glutamicum
To determine whether the secreted Fab has a correct
antigen-binding activity, it was partially purified from
culture supernatant by protein G affinity column, and
binding activity to its antigen (human HER2/ErbB2) was
evaluated by surface plasmon resonance assay as described
in Methods. As shown in Figure 6, the Fab secreted by
C. glutamicum had binding affinity to the antigen. The
dissociation constant (KD) value of this partially purified
Fab was calculated to be 0.36 nM, a value comparable to
that in a previous report by Khalili, et al. [42]. This con-
firmed that the secreted HC and LC assembled each other
and formed a complete Fab structure in the supernatant.
Discussion
In this study, we attempted to produce the clinically
important antibody Fab fragment, a heterodimeric mo-
lecule containing an intermolecular disulfide bond, using
the CORYNEX® system. As shown in Figure 2, the re-
combinant Fab(H+L) was secreted into the culture
medium by the industrial strain YDK010, in addition to
the monomeric HC and LC. Sequencing of the N-
terminal amino acids revealed that the signal peptide de-
rived from C. ammoniagenes CspA was properly cleaved
during secretion. It was also shown that an intermolecu-
lar disulfide bond was formed between HC and LC. The
secreted and partially purified Fab showed high binding
activity to its antigen HER2/ ErbB2 (Figure 6). This is
the first Fab expression experiment performed in C. glu-
tamicum by the conventional CORYNEX® system using
the cspB promoter and the Sec-dependent CspA signal
peptide. Recently, secretion of antibody single-chain
variable fragment (scFv) in C. glutamicum was also re-
ported [43-45]. Yim et al. reported the secretion of scFv
in the C. glutamicum ATCC13032 strain, with approxi-
mately 18 mg/l in flask cultivation and 68 mg/l in a 5-L
bioreactor, using a fully synthetic H36 promoter and the
Sec-dependent PorB signal peptide [45]. scFv is a mono-
meric molecule, whereas Fab is a heterodimer containing
an intermolecular disulfide bond. The present report
thus reveals the ability of C. glutamicum to secrete a
recombinant heteromultimeric protein in active form.
Production of recombinant antibody fragments using
microbial expression systems has also been reported,
with yields of several dozen mg/l [3-13]. In our study,
C. glutamicum showed the ability to secrete recom-
binant antibody fragment at equal or even higher levels
than other expression systems. Moreover, this secretion
system has a great advantage for protein purification be-
cause C. glutamicum produces only small amounts of
endogenous extracellular proteins. However, accumu-
lation of the secreted Fab in the YDK010 strain was still
low. To identify the bottleneck in Fab production in
C. glutamicum, we investigated the effects of specific cell
wall-related genes and succeeded in developing a strain
with improved secretion ability by mutating cspB and
pbp1a.
We first screened the nonessential PBPs in the industrial

strain YDK010 (originally derived from the wild-type
ATCC13869 strain) and found that the Δpbp1a deletion
markedly improved Fab secretion (Figure 3). However, this
effect was not observed on the wild-type background. Fur-
ther genetic analysis revealed that a mutation in the cspB
gene was also involved in the improvement of Fab secre-
tion. A reconstituted double mutant ΔcspBΔpbp1a on the
wild-type ATCC13869 background, but neither of the
constituent mutations alone, showed improved Fab secre-
tion (Figure 4). Both cspB and pbp1a are cell wall-related



Figure 6 Antigen-binding activity of Fab secreted by C. glutamicum. The secreted Fab was partially purified and assayed for antigen-binding
activity by Biacore X100. A CM5 sensor chip immobilized with the extracellular domain of recombinant human HER2/ErbB2 (577 RU) was used to
obtain the binding sensorgram of Fab.
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genes; PBP1a is involved in PG synthesis, and CspB forms
the cell wall S-layer. These results suggest that there are at
least two crucial permeability barriers to Fab secretion in
the cell surface structure of C. glutamicum.
Because these two genes are both cell wall-related

genes, mutations in them may affect the integrity of the
cell surface structure. Indeed, a lysozyme sensitivity test
supported this idea. Both the ΔcspB and Δpbp1a single
mutant strains showed higher lysozyme sensitivity than
the wild type, whereas the ΔcspBΔpbp1a double mutant
strain showed far greater sensitivity than either single
mutant strain (Figure 5). These results indicate that
these mutations affect cell surface integrity. Lysozyme
sensitivity could be an effective parameter for screening
mutations (such as cspB and pbp1a) that affect, either
directly or in combination with other mutations, protein
secretion in C. glutamicum.
CspB is a structural protein of the S-layer that forms

solid two-dimensional paracrystalline arrays surrounding
the entire cell [37]. It is likely that the S-layer interferes
with the release of Fab into the extracellular space. Ge-
nome sequence data suggest that C. glutamicum has at
least nine PBPs [30]. Mutants of pbp1a and pbp1b, en-
coding class A HMW-PBPs, exhibited a similar morpho-
logical phenotype [30], although these proteins have
distinct binding partners [31]. PBP1a interacts with the
cell division protein DivIVA, whereas PBP1b interacts
with the morphogenic protein RodA [31]. PBP1b also in-
teracts with PBP2a and PBP2b, though PBP1a does not
interact directly with any other HMW-PBP [31]. Thus,
PBP1a may have a distinct function among HMW-PBPs
in C. glutamicum, possibly related to protein secretion.
C. glutamicum has a (coryno)mycolate hydrophobic

layer between the PG-arabinogalactan layer and S-layer
thought to function as a permeability barrier to antibiotics
and host defense molecules [26-29]. It is still unclear how
secreted proteins pass through this hydrophobic layer. The
mycolate layer is composed of free trehalose mycolates
and mycolic acid covalently bound to arabinogalactan,
which is in turn attached to the PG layer [28,29]. Loss of
PBP1a may affect formation of the mycolate layer by
modifying the PG-arabinogalactan layer.
We also examined the secretion of proteins other than

Fab, but the ΔcspBΔpbp1a double mutation was only ef-
fective for Fab as far as tested (data not shown). This
suggests that the bottleneck in protein production is dif-
ferent in each case.
In addition to Fab and constituent monomers, protein

bands at approximately 34–37 kDa were detected in the
culture supernatant of Fab producer strains. It is clear
that these were the degradation products of the secreted
Fab, because they were specifically detected by Western
blotting with anti-IgG (Figure 2b). Protein bands of ap-
proximately 12–16 kDa were also detected by SYPRO
Orange staining and did not react with anti-IgG. These
could be degradation products of Fab, because they were
not detected in the culture supernatant of the strain car-
rying the empty vector pPK4 (Figure 2a). The protease
(s) responsible for Fab degradation are unknown. Identi-
fication and deletion of such protease(s) is expected to
further improve Fab production by the CORYNEX®
system.

Conclusions
We have shown that a combination of ΔcspB and Δpbp1a
mutations improves recombinant Fab secretion from C.
glutamicum, suggesting that there are at least two perme-
ability barriers to Fab secretion in C. glutamicum: the PG
layer and the S-layer (Figure 7). Cell wall-associated genes
are thus promising targets for further improvement in re-
combinant protein secretion by C. glutamicum. Moreover,
lysozyme sensitivity could be an effective parameter for
screening mutations that affect protein secretion.

Methods
Bacterial strains, plasmids, and culture media
The bacterial strains and plasmids used in this study are
listed in Additional file 2: Table S1. E. coli JM109 was



Figure 7 Cell wall-permeability barriers to the recombinant Fab(H+L) secretion by C. glutamicum. HC and LC of the Fab fragment are
secreted through the cytoplasmic membrane by the Sec machinery and form a heterodimer with an intermolecular disulfide bond (S–S) in the
extracellular space. There are at least two crucial permeability barriers (X) interrupting Fab secretion; the PG-arabinogalactan layer synthesized by
PBP1a and the S-layer composed of CspB. These two structures also function as permeability barriers to lysozyme.
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grown in Luria–Bertani (LB) broth [46] and used for
plasmid construction. C. glutamicum wild-type strain
ATCC13869 and its derivative YDK010, an industrial
strain for protein secretion [40], were used. C. glutami-
cum strains were grown at 30°C in modified CM2G
medium [18] consisting of 10 g/l polypeptone, 10 g/l
yeast extract, 5 g/l glucose, 5 g/l NaCl, and 0.2 g/l DL-
methionine (pH 7.2), or modified CMDex medium [41]
consisting of 5 g/l glucose, 10 g/l polypeptone, 10 g/l
yeast extract, 1 g/l KH2PO4, 0.4 g/l MgSO4 · 7H2O, 3 g/l
urea, 0.01 g/l FeSO4 · 7H2O, 0.01 g/l MnSO4 · 5H2O,
1.2 g/l (as total nitrogen) soybean hydrolysate, and
10 μg/l biotin (pH 7.5). For antibody Fab fragment secre-
tion, C. glutamicum strains were cultured in 3 ml of li-
quid CM2G medium at 30°C overnight and 0.2 ml of the
cultures were inoculated in 4 ml of modified liquid
MMTG medium [18] consisting of 120 g/l glucose, 3 g/l
MgSO4 · 7H2O, 30 g/l (NH4)2SO4, 1.5 g/l KH2PO4,
0.03 g/l FeSO4 · 7H2O, 0.03 g/l MnSO4 · 5H2O, 0.45 mg/l
thiamine hydrochloride, 0.45 mg/l biotin, 0.15 mg/l DL-
methionine, 0.2 g/l (as total nitrogen) soybean hydro-
lysate, and 50 g/l CaCO3 (pH 7.0) in a test tube, and
then cultured at 30°C for 96 h. Kanamycin (25 μg/ml)
was added to the culture medium as required. To pre-
pare agar plates, agar (20 g/l) was added to the growth
media.

Construction of a plasmid for Fab secretion
The DNA sequences encoding the variable regions of the
HC and LCs of anti-HER2 (GenBank accession numbers,
AY513484 and AY513485, respectively) and each constant
region were designed by incorporating the C. glutamicum
codon bias (GenScript, Piscataway, NJ, USA). DNA frag-
ments containing the promoter of cspB from C. glu-
tamicum and the signal sequence of CspA from C.
ammoniagenes were fused to the HC or LC genes by
GenScript to produce the tandem expression cassette
(Figure 1 and Additional file 1: Figure S1). The synthesized
construct was digested with BamHI or XbaI, respectively,
and inserted into the BamHI and XbaI sites of pPK4 [18]
to obtain pPKStrastFabHL. The cloned fragments were se-
quenced to confirm the intended construction.

Protein analysis
The culture supernatant was obtained by centrifugation
and 10 μl of supernatant was mixed with an equal
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volume of SDS sample buffer (Bio-Rad, Hercules, CA,
USA) without reducing agent. Proteins were separated
by 10%–20% gradient polyacrylamide gel electrophoresis
(PAGE) as described by Laemmli [47] under non-redu-
cing conditions, and the gels were stained with SYPRO
Orange (Life Technologies, Carlsbad, CA, USA). Estima-
tion of Fab production yield was done by quantifying the
intensity of protein bands in gels using Multi Gauge
software (Fujifilm, Tokyo, Japan). A standard curve was
generated using a standard protein solution of known
concentration run in the same gel. For determining the
N-terminal amino acid sequence, proteins were trans-
ferred to a polyvinylidene difluoride (PVDF) membrane
by electroblotting after separation by sodium dodecyl
sulfate (SDS)-PAGE, and the protein bands were directly
applied to a gas-phase protein sequencer (model PSQ;
Shimadzu, Kyoto, Japan) equipped with an in-line amino
acid analyzer (model RF-550; Shimadzu), as described
previously [48]. Western blotting analysis was performed
with alkaline phosphatase (AP) conjugated anti-human IgG
(H+L) antibody (Rockland Immunochemicals, Gilbertsville,
PA, USA) and an AP conjugate substrate kit (Bio-Rad,
Hercules, CA, USA).

Antigen-binding activity analysis of Fab
Culture supernatant was collected by centrifugation and
filtered with a 0.22 μm Millex-GV syringe filter unit
(Merck Millipore, Billerica, MA, USA). 20 ml of the
filtrated supernatant was injected directly onto 1 ml of
HiTrap Protein G affinity column (GE Healthcare UK.
Ltd., Buckinghamshire, England) which was pre-equili-
brated with 20 mM Tris–HCl (pH 7.5). Subsequently, Fab
trapped in the column was eluted with 3 ml of 0.1 M
Glycine-HCl (pH 2.7), and 20 μl of 2 M Tris–HCl (pH 8.5)
was added immediately to bring to physiological pH. Bia-
core X100 (GE Healthcare UK. Ltd., Buckinghamshire,
England) was used for surface plasmon resonance analysis.
The extracellular domain of recombinant human HER2/
ErbB2 (Sino Biological Inc., Beijing, China) was diluted in
10 mM sodium phosphate buffer (pH 6.0) and immobilized
on a CM5 sensor chip (GE Healthcare UK. Ltd., Bucking-
hamshire, England) to achieve 577 resonance units (RU) by
amine coupling according to the manufacturer’s instruc-
tions. Various concentrations of samples were injected into
the flow cell diluted with HBS-EP buffer (10 mM HEPES
pH 7.4, 150 mM NaCl, 3 mM EDTA and 0.005% surfactant
P20). All kinetic measurements were conducted at 25°C at
a flow rate of 30 μl/min with an association time of 120 s
and dissociation time of 600 s. Chip regeneration was
accomplished by exposing the chip to 10 mM Glycine-HCl
(pH 1.5) for 120 s. Data were calculated using Biacore
X100 evaluation software (GE Healthcare UK. Ltd.,
Buckinghamshire, England) by fitting the data to a 1:1
binding model.
Construction of pbp1a and pbp1b deletion mutants of
C. glutamicum
C. glutamicum disruptants were constructed as described
previously [41]. Plasmid pBS5T [49], which carries a
temperature-sensitive replication origin and the Bacillus
subtilis sacB gene, was used as a suicide vector [50]. To
construct a pbp1a disruptant, two successive rounds of
PCR were performed. In the first-round, a 1.0-kb upstream
region of the pbp1a gene was PCR-amplified from
ATCC13869 chromosomal DNA template using the
primers 5′-GTCGGATCCGCCCCCCTGAGCCAAATAT
TC-3′ and 5′-TTTCTAGCGGAAGAACTGGTTGATGG
CGTCGAGCTTTGTCAGAGA-ATTCGTGGT-3′, and a
1.0-kb downstream region of the pbp1a gene was
PCR-amplified using primers 5′- GTGTCCACCAC
GAATTCTCTGACAAAGC-TCGACGCCATCAACCAG
TTCTTCC-3′ and 5′-AGTATCTAGATTCGAGTCG
CTT-TTGGTTGGC-3′. Second-round PCRs were per-
formed on the first-round PCR products using the primers
5′-GTCGGATCCGCCCCCCTGAGCCAAATATTC-3′
and 5′- AGTATCTAGATTCGAGTCGCTTTTGGTT
GGC-3′. The amplified fragments were digested with
BamHI and XbaI and inserted into the BamHI–XbaI site
of pBS5T to obtain pBS5TΔpbp1a. Similarly, to construct
a pbp1b disruptant, a 1.3-kb upstream region of the pbp1b
gene was PCR-amplified from ATCC13869 chromosomal
DNA template using the primers 5′-CGGCGAA
CTCAAAAACAGCAT-3′ and 5′-GGATAGTCAGCC
CCGGCAGGATCCTTTTGCCACTGCTCTTTTTG −3′,
and a 1.1-kb downstream region of the pbp1b gene
was PCR-amplified using primers 5′- CAAAAAGAG
CAGTGGCAAAAGGATCCTGCCGGGGCTGACTATC-
3′ and 5′- CCAAACAACCCGAAGCTCAAC-3′ as first-
round PCRs. Second-round PCRs were performed on the
first-round PCR products using primers 5′-CGGC
GAACTCA-AAAACAGCAT-3′ and 5′-CCAAACAACC
CGAAGCTCAAC-3′. Amplified fragments were digested
with PstI and SalI, and the resulting 2.2-kb fragment
was inserted into the PstI–SalI site of pBS5T to give
pBS5TΔpbp1b. Vector pBS5TΔpbp1a or pBS5TΔpbp1b
was introduced into C. glutamicum by electroporation,
and kanamycin-resistant transformants were selected at
34°C. Because pBS5T does not replicate at 34°C, only
single-crossover chromosomal integrants grew on kana-
mycin-containing CMDex plates at 34°C. One of the
kanamycin-resistant transformants was grown in CMDex
medium without kanamycin overnight, and the cells were
spread on sucrose-containing CMDex agar plates (10%
sucrose). Cells carrying the sacB gene do not grow in the
presence of sucrose, and thus, only cells in which the sacB
gene was excised from the chromosome by a second
homologous recombination event grew on the sucrose-
containing plates. The resulting sucrose-resistant recom-
binants presumably had the wild-type or the deleted
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pbp1a or pbp1b gene, depending on the recombination
points. The desired disruptants were selected by PCR. The
pbp1a or pbp1b deletion mutants of C. glutamicum were
designated as YDK010Δpbp1a, YDK010Δpbp1b, ATCC
13869Δpbp1a, ATCC13869Δpbp1b, ATCC13869ΔcspBΔp
bp1a, and ATCC13869ΔcspBΔpbp1b, respectively.

Lysozyme sensitivity test of C. glutamicum
Lysozyme sensitivities of C. glutamicum ATCC13869,
ΔcspB, Δpbp1a, ΔcspBΔpbp1a, Δpbp1b, and ΔcspBΔpbp1b
mutants were evaluated by growth assay in LB liquid
medium or plate assay, as described previously [51].

Additional files

Additional file 1: Figure S1. Nucleotide sequence of the co-expression
cassette of Fab(H+L) in pPKStrastFabHL, with the amino acid sequences
given below. The sequence is presented in the 5′ to 3′ direction. The
putative ribosome-binding site (RBS), the amino acid sequence of the
CspA signal peptide, and restriction enzyme sites are boxed, underlined,
and described in lower case, respectively. The sequences of HC and LC
gene of the anti-HER2 Fab fragment are described in boldface.

Additional file 2: Table S1. Bacterial strains and plasmids used in this
study.
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