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Abstract

The composition of cultivation media in relation to strain development for industrial application is
reviewed. Heterologous protein production and pentose utilization by Saccharomyces cerevisiae are
used to illustrate the influence of media composition at different stages of strain construction and
strain development. The effects of complex, defined and industrial media are compared.
Auxotrophic strains and strain stability are discussed. Media for heterologous protein production
and for bulk bio-commodity production are summarized.

Introduction

The composition of the medium used for cultivation of
micro-organisms is directly reflected in their physiological
phenotype and their fermentation performance, which in
turn affects the results of strain analyses and strain per-
formance in industrial applications. For this reason, the
successful development of strains for large scale industrial
production of heterologous proteins [1,2] and low-value
fuels, chemicals and materials [3,4] merits the composi-
tion of cultivation media in various steps of strain devel-
opment to be reconsidered.

Introducing novel recombinant strains into industrially
relevant cultivation media may reveal that the strain has
not been properly designed for this environment. For
example, it was found that a strain of the lactic acid bacte-
rium Streptococcus thermophilus engineered for enhanced
exopolysaccharide production - a trait highly desirable in

yoghurt production - failed to express the phenotype in
milk without the addition of an extra nitrogen source [5].
Similarly, a genetically modified strain of the yeast Saccha-
romyces cerevisiae, which had been communicated as the
ultimate solution to the fermentation of lignocellulose
derived xylose [6,7], was found to require yeast extract,
additional hexose sugar and oxygenation to efficiently fer-
ment the xylose fraction in spent sulphite liquor [8]. Fur-
thermore, heterologous protein production in yeast is
strongly influenced by the nitrogen-composition of the
production medium [9,10]. Thus the final industrial envi-
ronment must be considered throughout the strain devel-
opment process to avoid unfounded expectation and -
more importantly - to prevent costly investment into pre-
mature production facilities.

A cultivation medium is designed to reflect the elemental
composition and the biosynthetic capacity of a given
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Principle of Evolutionary Engineering [18-20].

microbial cell (see e.g. [11]). While the elemental compo-
sition of microbial cells is relatively similar, their biosyn-
thetic capacity varies widely. The yeast S. cerevisiae and the
bacterium Escherichia coli have extensive biosynthetic
capacity and grow in defined mineral media [12]. In con-
trast, the biosynthetic capacity of many lactic acid bacteria
is limited and they require rich or extensively supple-
mented medium for efficient growth [13]. Furthermore,
economic constraints make the large-scale production of
low-cost products reliant on cheap sources of carbon and
nitrogen, such as molasses from the sugar industry, corn
steep liquor from the starch industry, spent sulphite lig-
uor from the forest products industry and cheese whey
from the dairy industry [14,15]. In addition to providing
carbon, nitrogen, vitamins and trace elements necessary
for cell growth and metabolite production, such industrial
media may also contain substances which inhibit growth
and metabolite production.

This paper reviews the influence of the composition of
cultivation media on the development of novel industrial
production strains with the view that it is necessary to con-
sider the final cultivation conditions in every stage of
strain development. Primarily two types of recombinant
strains of S. cerevisiae are used as examples: strains which
produce heterologous proteins and strains with an
expanded substrate range to include pentose sugars. Expe-
rience from other organisms is included to complement
the discussion. Finally, genetic engineering approaches to
overcome industrial media constraints are also exempli-
fied.

Metabolic engineering, evolutionary engineering and
systems biology in strain development

Traditionally, novel production strains have been devel-
oped by mutagenesis [16], breeding [17], and the lately
revived concept of evolutionary engineering (Figure 1;
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Principe of Metabolic Engineering (adapted from [23]).

[18-20]). Strains with novel traits are now also developed
by life science technologies including genetic and meta-
bolic engineering (Figure 2; [21-23]). In recent years these
engineering concepts have been expanded in the context
of systems biology to also include information and system
science technologies [24-26]. In metabolic engineering,
cells are iteratively analyzed, designed and synthesized
(Figure 2) using molecular tools such as recombinant
DNA technology and genomic information, [27,28]. Evo-
lutionary engineering (Figure 1) relies on carefully
designed selection protocols, i. e. media and cultivation
conditions [18-20] for the development of strains with
industrially interesting characteristics. Metabolic and evo-
lutionary engineering technologies may also be combined
to generate novel traits [29-33]. The multitude of data
generated in the analysis of the genome, transcriptome,
proteome and metabolome [25] requires the use of infor-
mation and system science technologies to translate these
data into design strategies for next rounds of metabolic
and evolutionary engineering [24]. Several studies have
pointed out that the cultivation conditions and media
composition used for the analysis of novel engineered
strains strongly influence the data generated [34-39].
Since such data form the basis for the design strategy for
the following rounds of strain development, it is evident
that choice of cultivation media is a fundamental and
integral part of strain development.

Media and strain stability

Whereas strain development by recombinant techniques
is usually performed in genetically defined laboratory
strains harboring markers suitable for selection of trans-
formed cells in chemically defined cultivation media, the
typical industrial production strain is genetically unde-
fined and adapted to perform in rather poor, toxic, vis-

http://www.microbialcellfactories.com/content/4/1/31

cous, and nutrient-limited media. Once desired novel
traits have been established in recombinant laboratory
strains, the novel strains are either directly transferred to
the industrial production environment or - as occurs
much more frequently - a potential production strain has
to undergo a new round of metabolic engineering proce-
dures. In both cases, the medium in which the novel path-
ways are developed differs substantially from the medium
in which the final production strain is expected to per-
form.

The genetic stability of strains is an absolute requirement
for utilization in industrial processes. Due to the adaptive
nature of microorganisms, attention should also be
directed towards the stability of any novel traits in recom-
binant or mutant strains. In industry, rich or undefined
media are often used, which may result in unexpected loss
of plasmids and even chromosomal modifications. Pro-
longed cultivation, for example in continuous fermenta-
tion set-ups, increases the probability of detrimental
genetic instability. Even in mineral medium, loss of plas-
mids with auxotrophic marker has been reported in pro-
longed continuous cultures [40]. This was caused by
released amino acids from the dying cells, and probably
also by spontaneous chromosomal insertion of the
marker gene [40].

In S. cerevisiae, both episomal plasmids (YEp; [41]) and
integrative plasmids (YIp; [42]) are used as expression
vectors for heterologous protein expression and metabolic
engineering. The advantage of YIp vectors, despite their
low copy numbers, is their robust genetic stability even in
unselective medium due to the integration of the vector
into the yeast genome [43-51]. The benefit of using YEp
plasmids is the high gene copy number of up to 70 copies
per cell [52] resulting in high expression levels of the
desired proteins, although their high segregational insta-
bility often results in plasmid loss especially in rich
medium [53,54]. However, the stability of YEp-type vec-
tors can be improved by autoselection systems, such as the
furl ura3 system [55], where the deletion of FURI
together with the use of a plasmid containing the URA3
marker results in stable plasmid expression even in con-
tinuous culture [56]. Without such autoselection systems
it is necessary to use a selective medium to overcome the
instability of YEp plasmids, which may pose a limitation
to the industrial use of such strains especially with low-
cost products.

Rich complex media versus defined media

Generally, microorganisms grow more vigorously in rich
media than in mineral media, because rich media contain
biosynthetic precursors that can be channeled directly
into anabolic pathways, reducing the need to produce
biosynthetic precursors and saving metabolic energy. This
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has a significant effect on growth and production charac-
teristics.

For example, a three-fold increase in production levels of
heterologous laccase by recombinant Yarrowia lipolytica
was reported when switching from yeast nitrogen base
(YNB) to complex medium [10]. When autoselective
strains of S. cerevisiae expressing heterologous xylanase or
o-L-arabinofuranosidase genes were cultivated in com-
plex YPD medium, 24-fold higher xylanase and up to 70-
fold higher levels of o-L-arabinofuranosidase were pro-
duced [57,58]. Similarly, production levels of the potent
thrombin-specific inhibitor, hirudin, by recombinant S.
cerevisiae was improved 20 fold in complex medium [59],
demonstrating the substantial impact of medium compo-
sition on heterologous protein production.

Aoki et al. [60] elegantly demonstrated single-step purifi-
cation of recombinant cysteine proteinase (NsCys) from
Pichia pastoris by switching medium composition during
cultivation. The recombinant P. pastoris was first culti-
vated in glycerol complex medium to generate biomass in
a short time. The cells were harvested and resuspended in
minimal medium for induction of NsCys production. The
minimal medium faciliated protein secretion and subse-
quent purification.

Strains of E. coli with altered levels of pyruvate decarboxy-
lase and alcohol dehydrogenase displayed a reduced flux
of pyruvate into the native fermentation pathways when
cultivated in defined medium [61]. In addition, the flow
of carbon skeletons into the 2-ketoglutarate arm of the tri-
carboxylic acid pathway and biosynthesis was restricted,
which dramatically reduced growth yields in defined
medium compared with complex medium. The observa-
tions demonstrated that inherent limitations in the
metabolism of engineered strains can be masked by the
presence of complex nutrients in the medium and are
often not observed without cultivation in defined
medium.

To illustrate the influence of media composition on strain
performance, we compared the growth of baker's yeast
and two recombinant strains: a laboratory strain of S. cer-
evisiae, TMB3001 [62] and an industrial strain of S. cerevi-
siae, TMB3400 [29]. Both recombinant strains have been
engineered for xylose utilization with the introduction of
the XYL1 [63] and XYL2 [64] genes encoding xylose
reductase and xylitol dehydrogenase, respectively, from
the yeast Pichia stipitis. In addition the endogenous gene
XKS1 [65] encoding xylulokinase has been overexpressed.

We evaluated the influence of four commonly used media
on growth and product formation under aerobic and oxy-
gen limited conditions: yeast extract-peptone (YP

http://www.microbialcellfactories.com/content/4/1/31

[66,67]); a defined mineral medium (DM; [68]); yeast
nitrogen base (YNB; [12]); and synthetic complete (SC)
medium equivalent to supplemented YNB [12] (Table 1).
YP is an undefined rich complex medium composed of
yeast extract (YE) and peptone. YE is prepared by autolysis
of whole yeast cells at around 50°C [66,69-71] and pep-
tone is an acid- or enzymatic hydrolysate of a protein-rich
by-product from the food and feed industry [67]. YP con-
tains all components necessary for propagation of yeast
cells, including biosynthetic building blocks, and it is fre-
quently used in the initial stages of fermentation when a
large inoculum is required. YNB is a chemically defined
medium that can be supplemented to satisfy auxotrophic
requirements of yeast mutants used in metabolic engi-
neering, then referred to as SC medium. DM medium con-
tains almost all components of YNB medium (Table 1),
however, some components are present in higher and
even an order of magnitude higher concentration than in
YNB medium. The DM medium and variants thereof are
commonly used to obtain quantitative physiological data
for yeast strains. It has been designed to assure that con-
centrations of vitamins and trace elements do not exercise
growth limitation [68]. Sodium chloride, riboflavin and
folic acid were not found to be necessary for growth of S.
cerevisiae, whereas cobalt apparently supported growth
(Table 1). EDTA seems to be required to dissolve elevated
concentrations of trace elements.

YP supported growth of a commercial baker's yeast strain
even in the absence of additional carbon source (Figure
3). The maximum specific growth rate under these condi-
tions was 0.29 h-1 with a final ODy,, of 3-4 after 24 hours.
With additional 20 g/l glucose an ODg,, of 22 was
reached at a maximum specific growth rate of 0.45 h-l.
Sugars present in YE may explain this phenomenon. Yeast
accumulates storage carbohydrates such as glycogen and
trehalose, the amount of which is strongly dependent on
cultivation conditions [72]. During the preparation of YE
these compounds are fully or partially hydrolyzed to
monomer glucose. YE also contains lactate, which can
serve as carbon source in yeast cultivation [9]. Lactate is a
consequence of non-sterile cultivation conditions in
baker's and brewer's yeast production [73]. In addition to
these auxiliary carbon sources, YE also contains a number
of other compounds, which strongly influence fermenta-
tion performance [9].

The maximum specific growth rate of TMB3001 and
TMB3400 in the four different media (Table 2) under aer-
obic and oxygen limited conditions varied considerably.
Highest growth rates were obtained in aerobic YP medium
and significantly lower growth rates were observed in the
three defined media both for glucose and xylose as carbon
source (Table 2). The results support previous observa-
tions that complex media components can mask inherent
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Table I: Media composition
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Components (g I') YP DM YNB SC (YNB+Suppl)
Yeast extract 10 - - -
Peptone 20 - -
(NH,),SO, - 5 5 5
KH,PO, - 3 | |
MgSO,7H,0 - 0.5 0.5 0.5
NaCl - - 0.1 0.1
Vitamins (mg I')

Biotin - 0.05 0.002 0.002
D-Pantothenic Acid - | 0.4 0.4
Nicotinic Acid - | 0.4 0.4
myo-Inositol - 25 2 2
Thiamine - | 0.4 0.4
Pyridoxine - | 0.4 0.4
p-Aminobenzoic Acid - 0.2 0.2 0.2
Riboflavin - - 0.2 0.2
Folic Acid - - 0.002 0.002
Trace Elements (mg I'')

H;BO, - | 0.5 0.5
CuSO,5H,0 - 0.3 0.04 0.04
KI - 0.1 0.1 0.1
Na,MoO,2H,0 - 0.4 0.2 0.2
ZnSO,7H,0 - 4.5 0.4 0.4
FeSO4-7H,O - 3 - -
FeCl;-6H,0 - - 0.2 0.2
MnCl,-2H,0O - | - -
MnSO,-4H,0 - - 0.4 0.4
EDTA - 15 - -
CoCl,-6H,0 - 0.3 - -
CaCl,2H,0 - 4.5 100 100
Supplements (mg I!)

Adenine (hemisulfate salt) - - - 40
L-arginine (HCI) - - - 20
L-aspartic acid - - - 100
L- glutamic acid (hemisulfate salt) - - - 100
L-histidine - - - 20
L-leucine - - - 60
L-lysine (mono-HCI) - - - 30
L-methionine - - - 20
L-phenylalanine - - - 50
L-serine - - - 375
L-threonine - - - 200
L-tryptophan - - - 40
L-tyrosine - - - 30
L-valine - - - 150
Uracil - - - 20

limitations in the metabolism of recombinant strains as
demonstrated for E. coli [61] and S. cerevisiae [8].

In all media TMB3400 displayed significantly higher spe-
cific growth rate on xylose than TMB3001 confirming pre-

vious results [29,32]. Reducing the oxygen supply
emphasized this difference. Both strains displayed signifi-
cantly lower specific growth rate on xylose than on glu-
cose (Table 2) confirming previous observations [29].
Also in this comparison, oxygen limitation increased the
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difference. DM and YNB medium resulted in almost iden-
tical specific growth rates indicating that the level of trace
elements and vitamins in YNB were not limiting growth
under the presently chosen cultivation conditions. Amino
acid supplementation in YNB slightly increased the spe-
cific growth rates during xylose utilization but not under
glucose utilization (Table 2).

The volumetric xylose uptake mirrored the growth rate in
all four media with both strains and under the two levels
of oxygenation (Table 2). Figure 4 shows the time course
for xylose consumption and product formation for
TMB3400 under oxygen limited conditions using YP and
YNB medium. Results from only one of the mineral media
are displayed since growth and product formation was
identical in all three mineral media. Whereas the results
emphasize the strong growth promoting influence of the
YP medium they also show that the media composition
did not influence the distribution of products under the
chosen conditions (Figure 4).

Buffers

Strain development may require large numbers of strains
to be evaluated for their performance in simple screening
set-ups [74,75], where neither oxygen availability nor pH
is controlled. When microorganisms grow in defined min-
eral medium with ammonium as the sole nitrogen source,
the medium quickly acidifies due to proton excretion dur-
ing active transport of nutrients into the cell [76]. Acidifi-
cation quickly inhibits cell growth and metabolism [77].
Therefore, the media must be buffered around the opti-
mal pH for the microorganism to be investigated. For
example in industrial yeast fermentations, it is relevant to
maintain pH around 5.5. We compared the influence of
50 mM buffering salts on growth of TMB3001 in YP and
in DM media (Figure 5). The suitability of citrate, citrate/
phosphate, phosphate and phthalate to buffer the growth
medium at pH 5.5 were compared.

YP had an inherent buffering capacity, while pH in non-
buffered DM decreased to 2.5 when maximum OD,, was
reached. The presence of citrate and citrate/phosphate
severely inhibited growth in YP, whereas the inhibition
was somewhat less severe in DM. With three carboxyl
groups, citrate is a chelating compound and complexes
with trace elements in YP. In DM, where the concentration
of trace elements has been enhanced (Table 1), the inhibi-
tion of citrate was less severe. Phthalate showed the best
buffering capacity, however, the price of this buffering
compound may limit its use in large amounts. With phos-
phate buffer, pH of DM medium dropped to around 3 in
the late stationary phase, but no growth inhibition was
observed. Thus depending on the scale of strain screening
either phthalate or phosphate buffer should be used for
yeast development work.

http://www.microbialcellfactories.com/content/4/1/31

Auxotrophic markers: pros and cons

The construction of recombinant strains requires selecta-
ble marker genes for efficient detection and selection of
transformed cells. For S. cereviciae, mutant and deletion
strains having one or several auxotrophic requirements
are the most commonly used tools in the development of
recombinant strains [78]. The use of auxotrophic mutants
relies on the assumption that complementing auxotrophy
by plasmid expression makes the strain equivalent to its
prototrophic counterpart. However, this is not always the
case, as was shown for strains carrying the LEU2 gene on
a multicopy plasmid [34].

In addition to the auxotrophic markers used for plasmid
retention, uncomplemented auxotrophic mutations often
remain present in the transformed yeast strains, requiring
the addition of the necessary amino or nucleic acids to the
cultivation medium. The use of such auxotrophic strains
has recently been critically reviewed [36]. Based on the
complications involved in translating experimental data
obtained with auxotrophic strains into quantitative phys-
iological data, the author concluded that auxotrophic
strains should be avoided unless auxotrophy itself was
under investigation. A solution to this problem is genetic
complementation of the remaining auxotrophic markers,
which is quite simple (see e.g. [32,37]) and recovers the
prototrophic genotype.

Uncomplemented auxotrophic mutations can also affect
production levels of recombinant proteins [36]. This was
recently confirmed when growth and extracellular protein
production were compared for an auxotrophic and a pro-
totrophic S. cerevisiae strain expressing the Trichoderma
reesei B-1, 4-xylanase XYN2 gene [37]. Only excessive
amino acid supplementation allowed the auxotrophic
strain to produce the heterologous protein at levels com-
parable to the prototrophic strain. Other studies have con-
firmed that excessive auxotrophic markers in transformed
S. cerevisiae strains often result in overconsumption of the
required metabolite and decreased growth, protein pro-
duction and genetic stability [9,34,45,79-84]. These stud-
ies clearly demonstrated that physiological data obtained
with auxotrophic strains have to be evaluated with great
caution and should not form the basis for future strain
design strategies.

Media requirements/supplements for heterologous protein
production

Expression of proteins is an inherent strategy of metabolic
engineering, whether it is performed for the production of
the protein itself or for redirecting a metabolic pathway. It
was early observed that high-level protein expression
influenced cell physiology of both prokaryotic and
eukaryotic microorganisms (lit. reviewed in [37,38,85]).
The most prominent effect was reduced cell growth. The
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Figure 3

Aerobic growth of baker's yeast in YP medium buffered with 50 mM Phthalate. With glucose -¢- (umax = 0.45), Without glu-

cose -%- (Lmax = 0.29)

phenomenon was named "metabolic" [53,86] and later
"protein” [40,87] burden since it was discriminated from
the influence of the catalytic activity of the protein [87].
The magnitude and the cause of the protein burden were
estimated by comparing recombinant strains of S. cerevi-
siae expressing T. reesei (-1, 4-xylanase encoded by the
XYN2 gene [85]. Both the introduction of the glycolytic
promoter without the structural gene, and the structural
gene itself, exercised a metabolic burden on the host. The
reduction of the maximum specific growth rates, the bio-
mass yields and the specific glucose consumption rates
were much larger than expected from the amount of het-
erologous protein produced [85]. When the cultivation
medium was supplemented with a balanced mixture of
preferred amino acids (Ala, Arg, Asn, Glu, Gln and Gly) or
succinate, the detrimental metabolic effect could partially
be relieved [38]. Amino acids enhanced cell growth and

heterologous protein production, which supported the
observation that recombinant yeast expressing heterolo-
gous proteins experience depletion of amino acids and
biosynthetic precursors [88].

The latter observation was the basis for genome-wide tran-
scription analysis of two isogenic strains of S. cerevisiae
harboring either a multicopy plasmid with the T. reesei
XYN2 gene under control of the S. cerevisiae PGK1 pro-
moter [58] or the plasmid with neither the structural gene
nor the promoter. Transcription data (available at
[89,90]) are summarized in Table 3. Transcriptional pro-
files during the expression of the heterologous xylanase
strongly resembled severe amino acid limitation resulting
in up-regulation of amino acid transport and synthesis,
complemented by the induction of the general stress
response and respiration, and the repression of ribosomal
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Table 2: Growth on glucose and xylose, respectively, and xylose uptake rate for recombinant xylose-utilizing S. cerevisiae strains, TMB
3001 [62] and TMB 3400 [29]. Cells were pre-grown (16 h) in DM medium with 20 g I'! glucose, harvested by centrifugation and
washed three times before inoculation at 0.01 g I-'. Aerobic growth: 100 ml medium in 1000 ml baffled E-flask at 180 rpm. Oxygen-
limited growth: 78 ml medium including 1.25 ml I'! Ergosterol/Tween® 80 in 80 ml flask with rubber septum and cotton-filled needle for
CO, outlet, stirring speed 150 rpm by a 2 cm magnetic stirrer bar. Media containing 20 g/l glucose and 20 g/l xylose, respectively, were
buffered to pH 5.5 with 50 mM phthalate and the temperature was set at 30°C.

Aerobic Ox-lim

YP DM YNB SC YP DM YNB SCP

Glucose pumax (h-') TMB 3001 0.56 0.42 0.42 0.45 0.40 0.32 0.32 0.32
TMB 3400 0.59 0.43 0.45 0.49 0.47 0.36 0.35 0.38

Xylose umax (h-') TMB 3001 0.32 0.14 0.14 0.14 0.009 0.006 0.006 0.006
TMB 3400 0.40 0.26 0.27 0.30 0.021 0.012 0.013 0.015

Vol. Xylose rate (g I'! h-!) TMB 3001 0.10 0.013 0.016 0.018 0.025 0.013 0.013 0.013
TMB 3400 1.13 0.56 031 0.39 0.12 0.09 0.09 0.09

and glycolytic gene expression. The transcriptional
response to heterologous xylanase expression thus closely
resembled the stringent stress response, apparently due to
amino acid limitation [38,91,92]. Similar stringent stress
response has been reported for strains of the bacterium E.
coli overproducing heterologous proteins. The E. coli strin-
gent stress response normally involves the repression of
ribosome synthesis and the derepression of respiration,
amino acid uptake and amino acid biosynthesis due to
nutrient limitation [93]. The stringent stress response in S.
cerevisiae has previously been associated with nitrogen
limitation and a nutritional downshift [94-97]. The fact
that amino acid supplementation of the cultivation
medium also improved heterologous protein production
under control of an oxygen regulated promoter in the
yeast Pichia stipitis [39] seems to further support that the
induction of a nitrogen starvation response due to heter-
ologous protein expression is general.

The choice of nitrogen source in cultivation media for the
production of heterologous proteins is crucial as has been
amply illustrated by observations with various complex
nitrogen sources for industrial protein production. Incon-
sistency in complex components such as yeast extract can
limit the reproducibility of industrial fermentation per-
formance, resulting in 2-3 fold differences in heterolo-
gous protein production levels [9]. For industrial
production, the proteins of complex cheese whey can be
hydrolysed by proteases to allow for utilization by micro-
organisms [98], which has been shown to improve the
heterologous protein production compared with mineral
medium [99,100]. However, other reports have indicated
slower growth and lower production of heterologous pro-
teins in cheese whey compared to mineral medium con-
taining lactose [101].

The presence of nitrogen components in cultivation
media may also be important to protect heterologous pro-
teins in the extracellular medium from proteolysis. Extra-
cellular proteolysis of heterologous proteins is affected by
nutritional conditions, and may increase due to glucose
exhaustion or carbon starvation [45,102,103]. The addi-
tion of complex nitrogen sources, such as casamino acids,
peptides, amino acids, skim milk or bovine serum albu-
min has been shown to decrease the degradation of the
heterologous proteins by S. cerevisiae and P. pastoris, prob-
ably by providing large amounts of protein substrate or
reducing the production of extracellular proteases
[81,104-110]. Addition of the amino acids arginine and
lysine to cultures of S. cerevisiae in defined medium has
decreased proteolysis of extracellular recombinant pro-
teins, most likely due to the inhibition of proteolytic
enzymes specific for peptide bonds including basic amino
acid [111,112]. Buffering the cultivation medium to a pH
where protein degradation is minimized can also reduce
the breakdown of heterologous proteins [104,107,113-
116].

Particular carbon sources may also be required to support
heterologous protein production during specific growth
phases. The production of recombinant antigens during
gluconeogenesis in S. cerevisiae required additional
medium components such as lactate and trehalose to
ensure sufficient availability of metabolic energy [9]. In
addition, too high concentrations of salts may reduce het-
erologous protein production [117].

For industrial production of high-value heterologous pro-
teins such as bio-pharmaceuticals, the higher costs associ-
ated with the use of a defined mineral medium may be
justified on the basis of increased reproducibility, produc-

Page 8 of 16

(page number not for citation purposes)



Microbial Cell Factories 2005, 4:31

http://www.microbialcellfactories.com/content/4/1/31

25

g/l

100 120 140 160 180

time (h)

Figure 4

Xylose utilisation and product formation during oxygen-limited cultivation of TMB 3400 [29] in YP and YNB media. Xylose YP-
@-, Xylose YNB -O-, Ethanol YP -A-, Ethanol YNB -A-, ODy,, YP -B-, OD,,, YNB -[I- Sugars and products were analyzed

with HPLC (Bio-Rad, Aminex 87-H column).

tivity, and requirements for regulatory approval [45]. For
both defined and complex media, the negative effect of
nutrient limitations can be minimized by optimizing the
concentrations of the medium components. This should
preferably be done by the response surface methodology
(see e.g. [118,119]). Such an empirical procedure is
required separately for each heterologous protein, for
each of which the optimal medium compositions may
differ substantially.

Industrial media for bulk bio-commodity production

Media components have a very strong impact on econom-
ics of industrial fermentation processes and can account
for up to 30% of the total production cost [120,121].
Large scale production of cheap commodities such as
fuels, chemicals and materials requires very cheap raw
material [14,15]. Such processes use by-products from the
agricultural, forestry and chemical industry as carbon and
nitrogen sources. Carbon sources include sugar beet and
sugar cane molasses, residues from sugar production,
spent sulphite liquor (SSL) from the paper pulping indus-
try, and cheese whey from the dairy industry. Spent yeast
biomass can be processed to obtain valuable medium
supplements (see e.g. [120,121]) and may serve as
replacement for the more expensive yeast extract. A fre-

quently used nitrogen source in industrial fermentation
processes is corn steep liquor formed during starch pro-
duction from corn [14,15].

Economic constraints in large-scale industrial processes
rigorously limit the utilization of additives and pretreat-
ments prior to cultivation. For the production of cell mass
and ethanol using molasses and SSL, salts of ammonia are
often the only additive providing the desired pH, a nitro-
gen source and possibly phosphate. Production of cell
mass and ethanol are usually performed under non-sterile
conditions [73] at a low pH, which allows yeast to grow
while the growth of contaminating microorganisms is
inhibited. It is obvious that production strains working
efficiently in such media are widely different from labora-
tory-strains initially used to develop novel metabolic
traits. The environmental constraints of industrial fermen-
tation media will be summarized under the following
headings: (i) multiple sugar substrates to be converted
into the final product; (ii) by-product formation; (iii)
nutrient limitation; and (iv) inhibitors.

(i) Multiple substrates
In addition to easily metabolized sugars, industrial sub-
strates may also contain a mixture of more unusual sugars.
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a-d. Influence of 50 mM buffer on aerobic growth of TMB 3001 [62] in YP and DM media. a, c: glucose 20 g/l in YP, b, d: glucose
20 g/l in DM. Non buffered -O-, Phthalate -[J-, Phosphate -A-, Citrate-Phosphate -x-, Citrate -0-

For example, beet and cane molasses contain galactose,
raffinose, and melibiose; starch derived substrates contain
maltose; and hemicellulose-derived substrates contain
galactose, mannose, xylose and arabinose. For maximum
process economy all sugars should be converted to the
desired product. The simultaneous presence of multiple
sugars in the industrial media may pose limitations such
as incomplete substrate utilization and inhibition of sugar
utilization pathways. Some sugars such as galactose [122]
and mannose are metabolized by S. cerevisiae, whereas
the utilization of other sugars such as raffinose [123-125],
melibiose [126], xylose [127] and arabinose [30,32]
requires that a new metabolic pathway is genetically intro-
duced. In addition, "natural” sugar utilization by S. cere-
visiae is governed by carbon catabolite repression [128]
and pathway induction [129], such that glucose and man-
nose are utilized first and other sugars are consumed only
when these carbon sources are depleted. To circumvent
this phenomenon, recombinant yeasts engineered in key

signaling elements of the carbon catabolite repression cas-
cade have been developed [130,131], which resulted in
enhanced total sugar consumption rate. However, the fea-
sibility of such engineered strains in industrial environ-
ments remains to be demonstrated. Carbon catabolite
repression can also be overcome by using fed-batch fer-
mentation regimes [132], which are easily applicable in
industrial processes.

(ii) By-products

Glycerol is formed in relatively small amounts during
anaerobic ethanolic fermentation [133]. However, con-
sidering the scale of ethanol production this unwanted
by-product represents product losses in the million €
range. Glycerol production during ethanolic fermentation
is a consequence of surplus NADH formation in biosyn-
thetic reactions [134-136]. During anaerobic growth of S.
cerevisiae in the absence of an active respiratory pathway,
biosynthetic NADH can only be oxidized through the
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Table 3: Summary of overall transcriptional changes in cellular
processes of xylanase-producing S. cerevisiae compared to
reference strain

Cellular Order of magnitude

Process change

Umax (Measured rate) 11 [85]

Glucose uptake rate (measured rate) Ll [85]
Glycolysis d
Amino acid requirement T
NH,* utilisation l
Respiration and TCA T
Iron uptake T
Transcription machinery T
Protein synthesis d
General stress response T

reduction of dihydroxyacetone-phosphate to glycerol 3-
phosphate, which ultimately leads to glycerol secretion. It
was experimentally demonstrated that glycerol secretion
is directly linked to amino acid synthesis in S. cerevisiae
[135], Glycerol production was reduced when ammo-
nium in the cultivation medium was substituted with
amino acids. However, amino acid supplementation of
industrial substrates for large-scale ethanol production is
presently not considered economically viable even with
relatively cheap protein hydrolyzates such as yeast extract
and peptone.

Reducing glycerol formation during ethanolic fermenta-
tion has also been approached with metabolic engineer-
ing strategies. Bacteria harbor transhydrogenase enzymes,
which convert NADH into NADPH in response to cellular
requirements. Attempts to express these enzymes in S. cer-
evisiae have met with limited success [137,138]. Instead,
endogenous redox reactions of the ammonia and amino
acid metabolism in S. cerevisiae have been engineered to
create artificial transhydrogenase functions [139,140]. In
anaerobic cultivation, ethanol formation increased at the
expense of glycerol formation in the engineered strains
[138]. The use of such engineered strains in industrial
applications remains to be demonstrated.

Anaerobic fermentation of xylose results in xylitol forma-
tion as a consequence of the difference in co-factor prefer-
ence in the xylose reductase and xylitol dehydrogenase
reactions, respectively (reviewed in [127]). Xylose reduct-
ase can use both NADPH and NADH as cofactor, whereas
xylitol dehydrogenase exclusively uses NAD+. Xylitol is
secreted and lost for ethanol production as a consequence
of intracellular NAD+ depletion. Several strain design
strategies have been explored to increase ethanol forma-
tion during xylose fermentation including modulations of

http://www.microbialcellfactories.com/content/4/1/31

intracellular co-factor availability [141-143] and expres-
sion of a mutated xylose reductase with reduced affinity
for NADPH [144]. None of the engineered strains have so
far been reported to be exposed to an industrial substrate.

An unexpected, yet fully explainable observation is that
industrial cultivation media sometimes decrease
unwanted by-product formation. For natural xylose fer-
menting yeast it was recognized that the reduction of an
external electron acceptor such as acetoin provided NAD+
for the xylitol dehydrogenase reaction, which prevented
xylitol formation [145-147]. For recombinant S. cerevisiae
the same phenomenon was quantified with metabolic
flux analysis [148]. The fact that recombinant laboratory
strains of S. cerevisiae produced more ethanol in a ligno-
cellose hydrolysate was interpreted in terms of lignocellu-
lose derived components acting as external electron
acceptors ([149]; see further discussion below).

Ethanol is an unwanted by-product in baker's yeast pro-
duction [150,151]. Baker's yeast is industrially produced
using a fed-batch regime, where the carbon substrate is fed
into the production vessel at a rate which prevents "over-
flow" metabolism at the level of pyruvate and thus limits
ethanol formation [152]. Since S. cerevisiae is also used for
large-scale heterologous protein production [153], the
unwanted ethanol formation during cell mass production
has been approached by genetic engineering. The affinity
of a S. cerevisiae hexose transporter has been reduced by
gene shuffling [154] as well as by chemostat selection
[155]. For both yeast strains, reduced ethanol formation
during batch growth at high glucose concentration could
be demonstrated as a consequence of the reduced glucose
uptake rate. Such engineered strains are advantageous in
the field of heterologous protein production, but it is
more doubtful whether such strains ever can replace the
simple fed-batch fermentation regime in baker's yeast pro-
duction. For baker's yeast the characteristics of the product
inherently include efficient carbon dioxide formation
under non-growing oxygen limited conditions and it has
not yet been demonstrated that this feature remains un-
impaired in strains with reduced glycolytic rate.

(iii) Nutrient limitation

Nutrient limitation and starvation with respect to indus-
trial yeast fermentation has mainly been discussed in rela-
tion to the classical processes of beer, wine and baker's
yeast production. It may lead to "stuck" fermentation,
which translates into large economic losses to the indus-
try. New insight into the molecular mechanisms of nutri-
ent limitation and starvation [156] makes this field of
research develop rapidly [156-158]. Whereas media and
strain modification in the production of beer, wine and
baker's yeast may be limited by legislation and the final
organoleptic quality of the product, the large scale fuel,
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materials and chemical industry is limited by economic
constraints. Therefore, it remains to be demonstrated that
recent research on nutrient starvation in yeast can be
translated into novel fermentation strategies and novel
industrial fermentation substrates. In ethanol production
for the fuel and chemical markets, one rather relies on nat-
ural strain isolates, which have fully adapted to nutri-
tional variation.

(iv) Inhibitors

Fermentation substrates for the production of fuels, mate-
rials and chemicals will be produced from lignocellulosic
raw materials rather than from starch and sugar. The lig-
uefaction of lignocellulose inherently leads to the forma-
tion of weak acids, furan derivatives and phenolic
derivatives [74,159]. It is well known that weak acids can
act as uncouplers and stimulate ethanol production
[68,160]. Similarly, furan and phenolic compounds often
appear carbonylated and as such function as external elec-
tron acceptors, which in the case of xylose fermentation is
beneficial for ethanol formation (see (ii) By-products;
[148,149]). However, the beneficial effect of these com-
pounds is strongly concentration dependent and they
more often act synergistically to inhibit yeast fermenta-
tion [159]. Therefore, the majority of reports on the fer-
mentation of hydrolysates derived from lignocellulosics
deal with the inhibitory characteristics of such fermenta-
tion substrates.

Lignocellulose hydrolysates have to be detoxified prior to
fermentation [161,162]. However, the detoxification adds
cost to the process [163] and should therefore be avoided.
An elegant solution was demonstrated by applying a fed-
batch regime to the fermentation of lignocellulosic hydro-
lysate [164]. Numerous yeast strains have been evaluated
for their ability to ferment non-detoxified lignocellulose
hydrolysate [165-169] The results of these studies are not
always coherent, which reflects the profound influence of
fermentation conditions such as media composition, oxy-
genation and fermentor set-up. However, it emerges that
most laboratory strains used in the early stages of strain
development cannot be used for an industrial raw mate-
rial such as hydrolyzed lignocellulosics, whereas strains
isolated from industrial environments generally perform
much better. This was illustrated by comparing three dif-
ferent recombinant Saccharomyces strains expressing the
XYL1, XYL2 and XKS1 genes for their ability to grow and
ferment sugars in non-detoxified northern spruce hydro-
lysates (NSH). The laboratory strain TMB3001 [62] could
not even tolerate 20% NSH, whereas the industrial strain
TMB3400 [29] could grow in 33% NSH after supplemen-
tation with yeast extract. TMB3006 [170] derived from an
acetic acid-tolerant Saccharomyces industrial strain isolated
from a continuous spent sulfite liquor fermentation plant
[171], could sustain growth in 40% NSH.

http://www.microbialcellfactories.com/content/4/1/31

Strains tolerant to industrial media can be further
improved by evolutionary engineering [18-20]. After
exposing TMB3006 to continual selection to a NSH gradi-
ent of 40 - 70%, a NSH-adapted strain was obtained that
could sustain growth in 70% NSH. This strain could be
maintained in steady state at a dilution rate of D = 0.1 h-!
with an ethanol yield of 0.41 g/g on consumed glucose,
which illustrated the importance of strain background to
achieve the necessary robustness to ferment harsh sugar
syrups, such as NSH.

Concluding remarks

The current literature on media composition in different
stages of strain development for large scale industrial yeast
fermentation has been summarized with a view that
media composition is an integral part of strain develop-
ment. In particular the final industrial environment must
be carefully considered throughout the strain develop-
ment process in order to assure the successful introduc-
tion of novel engineered strains into large-scale industrial
processes.
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