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Abstract

Background: One of the major challenges of nanotechnology during the last decade has been the development
of new procedures to synthesize nanoparticles. In this context, biosynthetic methods have taken hold since they
are simple, safe and eco-friendly.

Results: In this study, we report the biosynthesis of TiO2 nanoparticles by an environmental isolate of Bacillus
mycoides, a poorly described Gram-positive bacterium able to form colonies with novel morphologies. This isolate
was able to produce TiO2 nanoparticles at 37°C in the presence of titanyl hydroxide. Biosynthesized nanoparticles
have anatase polymorphic structure, spherical morphology, polydisperse size (40–60 nm) and an organic shell as
determined by UV–vis spectroscopy, TEM, DLS and FTIR, respectively. Also, conversely to chemically produced
nanoparticles, biosynthesized TiO2 do not display phototoxicity. In order to design less expensive and greener solar
cells, biosynthesized nanoparticles were evaluated in Quantum Dot Sensitized Solar Cells (QDSSCs) and compared
with chemically produced TiO2 nanoparticles. Solar cell parameters such as short circuit current density (ISC) and
open circuit voltage (VOC) revealed that biosynthesized TiO2 nanoparticles can mobilize electrons in QDSSCs similarly
than chemically produced TiO2.

Conclusions: Our results indicate that bacterial extracellular production of TiO2 nanoparticles at low temperatures
represents a novel alternative for the construction of green solar cells.
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Introduction
The rapid advance of nanotechnology and the increasing
number of applications involving nanomaterials have
prompted the interest in developing simple and environ-
mentally friendly protocols for nanoparticle synthesis.
To date, titanium nanoparticles (NPs) are one of the

most required nanomaterials because of its use on different
technological applications. Nanoparticulated titanium di-
oxide is a highly valuable material since it is used as photo-
catalyst degrading organic molecules in water treatment
[1], white pigment in paint manufacturing, additive in food
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and personal care products [2], and composite films in bio-
medical sciences [3], among many other applications.
Since TiO2 nanoparticles can conduct electrons as a

wide-band gap semiconductor, its use as photoanode in
the manufacture of Dye- and Quantum Dots- Sensitized
Solar Cells (DSSCs and QDSSCs, respectively) has gained
importance during the last decade [4,5]. This application
has become more attractive during the last years due to
the global need for replacing fossil fuels for energy gener-
ation. Accordingly, the research and development of non-
conventional renewable energies (NCRE), particularly solar
energy, which arises as a sustainable and abundant alter-
native to meet the high world energy demand, has been
strongly stimulated [6].
Current methods to produce TiO2 nanoparticles in-

volve different chemical procedures such as sol–gel [7],
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hydrothermal [8] and solvothermal [9], among others. All
these methods involve high temperatures (>200°C) and
in some cases elevated pressures, both conditions affect-
ing the safety and costs of the process.
During the last years, NPs biosynthesis methods in-

volving microorganisms [10,11] or plant extracts [12], as
well as eco-friendly chemical procedures involving low
toxicity reagents and mild conditions of temperature
and pressure, have taken hold [13]. This has allowed the
Table 1 Biosynthesis of TiO2 nanoparticles reported to date

Organism used in the
biosynthesis

Gram Precursor Synthesis
temperatur

Saccharomyces
cerevisiae

Not
applicable

Titanyl hydroxide 60°C

TiO(OH)2

Lactobacillus sp. (+) Titanyl hydroxide 60°C

TiO(OH)2

Bacillus subtilis (+) Titanyl hydroxide 60°C

TiO(OH)2

Leaves extract of
Nyctanthes arbor-tristis

Not
applicable

Titanium
tetraisopropoxide

1. 50°C

Ti(OCH(CH3)2)4 2. 500°C (cal

Aqueous extract of
Jatropha curcas L. latex

Not
applicable

Titanyl hydroxide 50°C

TiO(OH)2

Aspergillus flavus Not
applicable

Titanium dioxide 37°C

TiO2

Leaf aqueous extract of
Eclipta prostrata

Not
applicable

Titanyl hydroxide Room Temp

TiO(OH)2

Annona squamosa
peel extract

Not
applicable

Titanyl hydroxide 60°C (Optim

TiO(OH)2

Bacillus subtilis (+) Potassium
hexafluorotitanate

1. Not show

K2TiF6 2. 500°C
(to crystallize

Leaves extract of
Catharanthus roseus

Not
applicable

Titanium dioxide 50°C

TiO2 (powder)

Flower aqueous extract
of Calotropis gigantea

Not
applicable

Titanyl hydroxide 90°C

TiO(OH)2

Planomicrobium sp. (+) Titanium dioxide 50°C

TiO2

Propionibacterium jensenii (+) Titanyl hydroxide 1. 60°C

TiO(OH)2 2. 300°C (ann

Aeromonas hydrophila (−) Titanyl hydroxide 30°C

TiO(OH)2

Leaves extract of Solanum
trilobatum

Not
applicable

Titanyl hydroxide Room Temp

TiO(OH)2
development of nanoparticles displaying novel properties
such as composition, size and biocompatibility [14-20].
Biological protocols for the synthesis of TiO2 nanoparti-
cles have been developed, and the use of bacteria [21],
yeasts [22], fungi [23] and plant extracts [24] have been
recently reported (Table 1). Most biosynthetic proce-
dures involve the use of titanyl hydroxide as precursor,
and generate NPs with similar properties to those ob-
tained by chemical procedures, such as size distribution
e
Particle size Crystal

structure
(dominant)

Application Reference

13 nm (TEM) Anatase and
Rutile

- [22]

18 nm (XRD)

25 nm (TEM) Anatase and
Rutile

- [22]

30 nm (XRD)

66-77 nm (SEM) Anatase - [21]

100 nm (XRD) Not shown - [29]

cined) 100–150 nm (SEM)

25-100 nm Anatase - [30]

62-74 nm Anatase and
Rutile

Against
pathogenic
bacteria

[23]

erature 49.5 nm Rutile - [24]

(36–68 nm)

al) 26 nm (XRD) Rutile - [31]

23 nm (TEM)

n 10-30 nm Anatase Photocatalytic
activity on
aquatic biofilm

[28]

particles)

25-110 nm (SEM) Anatase and
Rutile

Antiparasitic
activity

[32]

65 nm (XRD)

160-220 nm
(SEM)

Not shown Acaricidal
activity

[26]

10.52 nm (XRD)

100-500 nm
(SEM)

Not shown Antibacterial
and antifungal
activity

[33]

8.89 nm (XRD)

65 nm (XRD) Anatase Preparation of
collagen-TiO2

wound dressing

[27]

ealed) 10–80 nm
(FE-SEM)

40.5 nm (XRD) Rutile Antibacterial
activity

[25]

28–54 nm (SEM)

erature 70 nm (SEM) Rutile Antiparasitic
activity

[34]



Figure 1 Colony of B. mycoides isolate (SIN strain).
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and anatase/rutile crystal structure. In addition, most ap-
plications of biosynthesized TiO2 nanoparticles tested to
date are based on their toxic properties against pathogens
such as bacteria [23,25] and mites [26]. Furthermore,
in vivo and in vitro biocompatibility studies [27] have been
carried out and their biocidal/photocatalytic activity on
aquatic biofilms has been evaluated [28] (Table 1).
No reports regarding the application of biosynthesized

titanium dioxide nanoparticles in energy devices have been
published to date (Table 1). The use of other biologically
produced materials in sensitized solar cells has been re-
cently reported, however these reports focused on using
plant pigments or channel proteins in the photon harvest
process [35,36].
The present work reports for the first time the use of

biosynthesized titanium dioxide nanoparticles by B. mycoides,
as semiconductors in the manufacture of photoanodes for
QDSSCs. Along with introducing a new method for the
synthesis of TiO2 nanoparticles, the present manuscript
constitutes a first approach for using biosynthesized nano-
particles in solar cells and opens the interest in using
other biosynthesized nanoparticles in energy devices as a
way to develop greener photovoltaic technologies at low
production costs.

Results and discussion
Environmental isolate of Bacillus mycoides
A B. mycoides strain isolated from a soil sample obtained
from a volcanic zone in Chile was used for biosynthesis
of TiO2 NPs. B. mycoides is a member of the Bacillus ce-
reus group of bacteria, a nonpathogenic soil and sapro-
phyte Gram-positive bacilli. When grown on agar plates,
this bacterium has the ability to form chains of cells that
define macroscopic colonies with filaments projecting ra-
dially and curving in two possible orientations, clockwise
(Dextral or DX strains) or counter-clockwise (Sinistral or
SIN strains) [37]. The environmental isolate used in this
work displays the classical colony morphology of B.
mycoides with radial filaments in an anti-clockwise dir-
ection, indicative of a SIN strain (Figure 1).
Biosynthesis of TiO2 nanoparticles by the isolated strain

of B. mycoides was carried out by exposing bacterial cul-
tures to titanyl hydroxide at 37°C, the optimal growth
temperature determined for this environmental isolate
(not shown). Then, the temperature of the culture was
diminished (20–25°C) to stop the reaction and a white
precipitate was formed, indicative of TiO2 nanoparticles
synthesis. The precipitate was purified from the culture,
washed and resuspended in Mili-Q ultra pure water for
subsequent studies.
To date, there are two studies reporting the use of the

genus Bacillus for biosynthesis of TiO2 nanoparticles,
however, these reports do not use titanyl hydroxide as pre-
cursor [28] and require high temperatures for the synthesis
of NPs [21] (Table 1). Differences in the biosynthetic
process mediated by B. mycoides suggest that different
biomolecules could be involved in biosynthesis and that
the produced NPs could display novel properties.

Transmission electron microscopy (TEM)
A TEM analysis of the nanoparticles produced by B.
mycoides was performed with the aim to determine their
nanometric size and distribution. Biosynthesized TiO2

nanoparticles display a size between 40–60 nm and spher-
ical morphology (Figure 2). The size distribution histo-
gram indicates a high polydispersity of the sample; which
is a common behavior of NPs produced by biosynthetic
methods [23,24,27]. This result suggests that nanoparticles
are produced by cells at different times after addition of
titanyl hydroxide. TEM images of Figure 2a show nano-
particles coated by an organic envelope, probably corre-
sponding to the extracellular matrix produced by B.
mycoides. This matrix could participate in substrate
biotransformation (titanyl hydroxide to titanium dioxide
nanoparticles), or maybe could help stabilizing and/or
capping the NPs. When this sample was further purified
by successive washings steps using ultra pure water, indi-
vidual nanoparticles were observed (Figure 2b).

Fourier transform infrared spectroscopy (FTIR) analysis
Figure 3 shows the FT-IR spectrum of titanyl hydroxide,
biosynthesized titanium dioxide nanoparticles and chem-
ically synthesized titanium dioxide nanoparticles. The FTIR
spectrum of TiO(OH)2 shows the characteristic signals at
3400 cm−1 and 1630 cm−1 attributed to the presence of
hydroxyl groups (Ti-OH) and water in their structure.
The characteristic signal for TiO2 nanoparticles due to the
vibration of Ti-O-Ti bond is observed at 450–700 cm−1 in



Figure 2 Transmission electron microscopy of TiO2 nanoparticles synthesized by B. mycoides. Biosynthesized nanoparticles before (a) and
after successive washings in water (b). The inset in (a) shows the spherical morphology of TiO2 nanoparticles. The inset in (b) shows the size
distribution histogram of nanoparticles. Arrow heads indicate individual NPs. Images were obtained with a 100,000× magnification.
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both chemical and microbiological NPs. For biosynthe-
sized TiO2 nanoparticles a broad band at 3431 cm−1 is
observed. This signal corresponds to the O-H stretching
due to the alcoholic group. The peaks around 2985 cm−1

are assigned to the symmetric stretch (C–H) of CH2 and
CH3 groups of aliphatic chains. In 1646 cm−1, 1554 cm−1,
1462 cm−1 and 1400 cm−1 the characteristic signals of
C = O and N-H vibrations due to the presence of amide
and amine groups are shown. 1246 cm−1 corresponds to
C-O stretch vibrations, possibly due to the presence of an
alcohol or carboxylic acid group. The band at 1047 cm−1

corresponds to the C-N stretching vibrations of aliphatic
amines. The peaks at 1554 cm−1 and 1400 cm−1 might
also indicate the C =C ring stretching and bending vibra-
tion of CH2. All these signals can be attributed to the
presence of biomolecules like peptides or carbohidrates
Figure 3 FTIR spectra of TiO2 nanoparticles biosynthesized by B. myc
produced by chemical synthesis (c).
bound to the TiO2 nanoparticles produced by B. mycoides.
These biomolecules are part of the cell envelope of this
bacterium and can provide support for the nucleation of
the nanoparticles, and/or be involved in the biosynthesis
process acting as stabilizing and capping agents.

UV-visible spectroscopy and Tauc Plot analysis
In order to determine the UV-visible absorption spectrum
of biosynthesized TiO2 nanoparticles, the product of bio-
synthesis was washed gently with ethanol and resuspended
in ultrapure water to remove organic residues that might
interfere with the measurement.
The observed absorption spectrum coincides with those

obtained with titanium dioxide nanoparticles produced
by chemical methods, with a broad absorption band in
the UV range and the cut off wavelength near 380 nm
oides (a), the precursor TiO(OH)2 (b), and TiO2 nanoparticles



Órdenes-Aenishanslins et al. Microbial Cell Factories 2014, 13:90 Page 5 of 10
http://www.microbialcellfactories.com/content/13/1/90
(Figure 4) [27,28,38,39]. The obtained UV–vis spectra of
biosynthesized TiO2 nanoparticles was used to deter-
mine the band gap (Ebg) by the Tauc relation [40]. The
method for determination of the Ebg value involves plot-
ting (αhν)2 versus hν, where α is the absorption coeffi-
cient and hν is the energy of the incident photons. After
making a linear fit to the curve, the value of the band
gap is given by the value of the intercept of the line with
the X-axis (hν-intercept) in this graph (Figure 4, inset)
[41]. The band gap determined for biosynthesized TiO2

nanoparticles was 3.27 eV. This band gap value confirms
that B. mycoides is producing titanium dioxide in ana-
tase crystalline structure. Due to their wide band gap,
TiO2 nanoparticles in anatase crystalline form are prefera-
bly used in sensitized solar cells [42]. This result suggests
that biosynthesized nanoparticles are suitable semicon-
ductor materials that can be used in QDSSCs.
Antibacterial activity of biosynthesized TiO2 nanoparticles
Toxicity of TiO2 nanoparticles has become a relevant par-
ameter since it can determine its use in different techno-
logical applications. Almost all publications related to
biosynthesis of TiO2 NPs report the toxic and/or photo-
toxic effects of them (Table 1). Toxicity can decrease the
number of technological applications in which TiO2 NPs
can be used, but is the base of its use as antimicrobials
and photo-reactive compounds. The use of nanoparticles
in solar cells is not the exception and in addition to proper
size, composition and semiconductor properties, increased
biocompatibility will strongly favor their application in
harvesting solar energy.
Figure 4 UV-visible absorption spectrum of biosynthesized TiO2 nano
As shown in Figure 5a, almost no toxicity was deter-
mined in chemical and biological nanoparticles. E. coli
cultures were able to reestablish their growth after NPs
exposure. To confirm our results, growth inhibition area
assays were done, and no toxicity was determined for
the biological and chemical nanoparticles evaluated
(data not shown). Other studies have reported the biosyn-
thesis of TiO2 nanoparticles displaying high toxicity for E.
coli, with minimum inhibitory concentrations (MIC) near
20 and 40 μg/mL [23,25]. In contrast, the nanoparticles
produced by B. mycoides do not display any toxicity to E.
coli at these concentrations.
Most of the damage that TiO2 nanoparticles produce

on microorganisms has been associated to phototoxicity
(Table 1). When photocatalytic activity against E. coli
was evaluated, a small decrease in CFU was determined
for chemically synthesized TiO2 (Figure 5b). This is due
to lipid peroxidation on bacterial cell membranes pro-
duced by reactive oxygen species (OH•, O2

− and H2O2)
generated when titanium dioxide NPs are irradiated
with UV light [43]. When E. coli cultures were amended
with biologically synthesized TiO2 NPs and exposed to
UV-B light, no effect on cell viability was determined,
indicating that biosynthesized NPs do not display pho-
totoxicity under the evaluated conditions (Figure 5b).
Based on these results we can speculate that the organic
coating of nanoparticles produced by B. mycoides pro-
tects bacteria from the phototoxic damage by interact-
ing with UV-produced radicals. In this context, additional
purification steps decreasing the organic matter of
NPs probably increase phototoxicity of biosynthesized
TiO2 NPs.
particles and Tauc plot used to determine its band gap (inset).



Figure 5 Toxicity and phototoxicity evaluation of TiO2 nanoparticles against E. coli. (a) E. coli CFUs after exposure to 200 μg/mL of
chemical ( ) and biological ( ) TiO2 nanoparticles (control ). (b) E. coli CFUs after treatment with 200 μg/mL of chemical ( ) and
biological ( ) TiO2 nanoparticles exposed to UV light (control exposed to UV , control unexposed to UV ). The arrow in a indicates
the time in which cells were treated with TiO2 nanoparticles.
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Characterization and I-V measurement of the quantum
dot sensitized solar cells
Based on the favorable properties of biosynthesized TiO2

nanoparticles as wide-band gap semiconductors with low
levels of toxicity, we decided to evaluate their use on solar
cells.
A schematic representation of the solar cell used to

evaluate the biosynthesized TiO2 NPs is shown in Figure 6.
When QDs absorb light, they inject electrons from their
excited levels to the conduction band of the TiO2 nano-
particles film. The recirculation of the redox electrolyte in
its oxidized-reduced state allows to recharge the electrons
lost by oxidized QDs while serving as a pathway for elec-
tron transfer between the two electrodes [5,44]. Thus,
when light shines on the solar cell, the device directly con-
verts sunlight into electricity and the current and voltage
data can be recorded in an external circuit.
The results of short circuit current density (ISC) and open

circuit voltage (VOC) for the studied solar cells are summa-
rized in Figure 7. The ISC value corresponds to the max-
imum current (flow of electric charge) through the solar
cell when the voltage in the device is zero. Moreover, the
VOC is the maximum voltage (electric potential difference)
produced by the solar cell when the current flow is zero.
Figure 6 Scheme of a quantum dot sensitized solar cell. The film of bi
CdTe-GSH QDs forming the photoanode, while the cathode or counter ele
between electrodes.
The control solar cells produced with chemical titanium
dioxide nanoparticles display the highest values of voltage
and current, confirming that the flow of electrons between
the CdTe-GSH QDs and chemical TiO2 NPs works prop-
erly. Moreover, the QDSSC that uses biosynthesized TiO2

nanoparticles shows decreased values of ISC and VOC, at-
tributable to the presence of calcined organic matter on
the surface of nanoparticles after sintering of the material;
this calcined matter would work as insulation in electrical
conduction. However, when the organic coating of TiO2

nanoparticles was removed,VOC and ISC values are signifi-
cantly increased and the performance of the solar cell
using biosynthesized TiO2 nanoparticles is similar to that
observed in the control. The results obtained indicate that
it is possible to use the TiO2 nanoparticles produced by B.
mycoides in the development of greener solar cells.

Conclusions
In this work the biosynthesis of titanium dioxide nano-
particles using an environmental isolate of B. mycoides
was reported. Although the transformation of TiO(OH)2
to TiO2 normally occurs in a drying process or sol–gel
combustion at temperatures between 150 and 400°C
[45-47], in this paper we have shown that a B. mycoides
osynthesized TiO2 nanoparticles on conductive glass is sensitized with
ctrode is platinum on FTO glass. The redox electrolyte fills the space



Figure 7 I-V values of QDSSCs produced using biosynthesized TiO2 NPs.
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isolate is able to biotransform this precursor into its nano-
structured form at 37°C. A possible mechanism for TiO2

biosynthesis using titanyl hydroxide as precursor and a
still unknown organic molecule from B. mycoides (X) is
proposed in Scheme 1. Experiments to determine the
identity of the organic molecule(s) involved in biosyn-
thesis are under way in our laboratory.
TiO2 nanoparticles biosynthesized by B. mycoides exhibit

low toxicity against E. coli, probably as consequence of the
organic coating.
Biosynthesized nanoparticles are able to conduct elec-

trons in QDSSC with values near those determined in a
control solar cell produced with chemically synthesized
TiO2 nanoparticles.
Scheme 1 Possible mechanism for biotransformation of titanyl hydroxid
mediated by an acidic group present in an “unknown” component of the extrac
The main projection of this work is the use of these
and other green nanoparticles in the sustainable manufac-
turing of solar cells to develop ecologically friendly and
less expensive photovoltaic panels.

Methods
Synthesis of titanyl hydroxide precursor
Titanyl hydroxide was obtained by the hydrolysis of ti-
tanium isopropoxide [Ti(i-OPr)4] according to the fol-
lowing reaction [46]:

Ti i−OC3H7ð Þ4 þ 3H2O → TiO OHð Þ2 þ 4C3H7OH
e to titanium dioxide nanoparticles. The dehydration reaction would be
ellular matrix of B. mycoides that could have a key role in biotransformation.
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The reaction mixture was stirred for two hours under
ice-cold condition until an opalescent suspension of TiO
(OH)2 was obtained. The isopropyl alcohol (propan-2-ol)
was removed by successive centrifugations and washings
with Mili-Q ultrapure water. Finally, titanyl hydroxide was
resuspended in water. The precursor concentration was
obtained by determining the dry mass of a 1 mL solution,
which was lyophilized (freeze-dried) for 24 h.

Biosynthesis of TiO2 nanoparticles
A culture of 200 μL of B. mycoides grown overnight was
used to inoculate 200 mL of LB medium (dilution 1:1000).
This culture solution was grown for 12 h at 37°C with
constant shaking (150 RPM). Then, 40 mL of a 25 mM
titanyl hydroxide solution were added and the mixture in-
cubated at 37°C for 24 h with constant shaking. After this
time, the solution was incubated at room temperature for
8 h and the appearance of a white precipitate was indica-
tive of the production of titanium dioxide nanoparticles.
The precipitate was removed from the culture by centrifu-
ging 15 min at 3820 × g. Finally, the biosynthesis product
was washed and resuspended by successive centrifugations
in Mili-Q ultra pure water.

Characterization of TiO2 nanoparticles
Biosynthesized TiO2 nanoparticles were characterized by
UV-visible spectroscopy using a Synergy™ H1 Microplate
Reader (BioTek Instrument Inc.). Absorbance spectrum
between 300–700 nm (2 nm resolution) was performed
and used for band gap (Ebg) determination using the Tauc
relation [41].
For Transmission Electron Microscopy (TEM) studies,

a suspension of TiO2 nanoparticles was deposited on a
copper grid and examined using a Low Voltage Transmis-
sion Electron Microscope 5 (LVEM5) (Delong Instru-
ments) operated at 5.1 kV. The size distribution histogram
was performed using ImageJ software. Dinamic Light
Scattering (DLS) was performed in a Zetasizer Nano ZS
(Malvern Instrument Ltd.) equipment using the protocol
previously described by our group [10].
For the Fourier Transform Infrared Spectroscopy (FT-IR)

characterization samples were lyophilized (freeze-dried)
for 24 h and the powder was mixed with KBr to form a
thin pellet. FT-IR measurements were carried out using a
Spectrum One FT-IR Spectrometer (Perkin Elmer Inc.) in
the 400–4000 cm−1 range with a 4 cm−1 resolution.

Antibacterial activity of TiO2 nanoparticles
The antibacterial activity of biosynthesized TiO2 nanopar-
ticles was evaluated against E. coli (BW25113). Bacterial
cultures were grown in LB medium at 37°C with constant
shaking (150 RPM). After 3 h incubation (OD600 = 0.3)
cultures were amended with 200 μg/mL of chemically
(TiO2 nanopowder from Sigma-Aldrich, ~21 nm particle
size) or biologically synthesized TiO2 nanoparticles. The
photocatalytic effect of nanoparticles was evaluated using
the same concentrations indicated above, but irradiating
the culture with UV-B light for 2 min in the presence of
the nanoparticles (OD600 = 0.3).
The effect of TiO2 nanoparticles on bacterial growth

was evaluated by determining the number of colony form-
ing units (CFU) over time. Culture aliquots were taken
every hour and diluted to obtain 10−1 to 10−7 serial dilu-
tions. 5 μL of every dilution were plated on LB agar, and
incubated at 37°C for 12 h. After this time, CFU were
determined.

Fabrication and characterization of quantum dot
sensitized solar cells
QDSSCs were produced following the protocols described
by Bang et al. [48], Giménez et al. [49] and Pan et al. [50],
with some modifications. To fabricate the electrodes of
QDSSCs, 10 × 10 × 2 mm size fluorine doped tin oxide
coated glass (FTO glass) TEC15, with a surface resistivity
of 13 [Ω/sq] and 85% transmittance was used. Conductive
glasses were cleaned by successive sonication in absolute
ethanol and deionized water for approximately 10 min to
remove organic contaminants. The anode was prepared
using a suspension of biosynthesized TiO2 nanoparticles
that was deposited on the glass through spin-coating at
2000 rpm for 10 sec.
To prepare a uniform titanium dioxide film that facili-

tates electron transfer process in QDSSCs, it is important
to remove the organic coating on the surface of biosynthe-
sized TiO2 nanoparticles. For this reason, an additional
purification step was performed. Nanoparticles were
treated with 1% sodium dodecyl sulfate (SDS) and the
solution was sonicated gently for a few seconds to allow
disaggregation of the nanoparticles. Then, the suspension
of TiO2 nanoparticles was recovered by centrifugation,
washed and resuspended in Mili-Q ultra pure water. Ti-
tanium(IV) oxide nanopowder from Sigma-Aldrich and
biosynthesized TiO2 nanoparticles were used to manufac-
ture the photoanodes of QDSSCs. The electrodes (TiO2

films) underwent a sintering process at 450°C for 30 min.
Sensitization of TiO2 film was performed by direct ad-
sorption of CdTe-GSH quantum dots (QDs) [51]. The
active area of the cells was 0.16 cm2. Moreover, the cath-
ode or counter electrode was prepared from a solution of
H2PtCl6 · 6H2O in isopropanol. 10 μL of the solution were
dispensed on a FTO coated glass by spin-coating and
heated 20 min at 400°C.
Then, the photoanode and the counter electrode were

assembled leaving 127 μm space between them. Before
sealing the cell, a drop of electrolyte was added. The elec-
trolyte solution used was sulfide/polysulfide (S2−/Sn

2−) pre-
pared from Na2S (1.0 M), S (0.1 M) and NaOH (0.1 M) in
Mili-Q ultrapure water. Characterization of solar cells was
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performed under constant conditions of temperature
and irradiance at a one sun intensity as the light source
(~100 mW · cm−2 and AM1.5).
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