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Abstract 

Background:  The focus of this study is online estimation of biomass concentration in fed-batch cultures. It describes 
a bioengineering software solution, which is explored for Escherichia coli and Saccharomyces cerevisiae fed-batch 
cultures. The experimental investigation of both cultures presents experimental validation results since the start of 
the bioprocess, i.e. since the injection of inoculant solution into bioreactor. In total, four strains were analyzed, and 21 
experiments were performed under varying bioprocess conditions, out of which 7 experiments were carried out with 
dosed substrate feeding. Development of the microorganisms’ culture invariant generic estimator of biomass concen-
tration was the main goal of this research.

Results:  The results show that stoichiometric parameters provide acceptable knowledge on the state of biomass 
concentrations during the whole cultivation process, including the exponential growth phase of both E. coli and S. 
cerevisiae cultures. The cell culture stoichiometric parameters are estimated by a procedure based on the Luedeking/
Piret-model and maximization of entropy. The main input signal of the approach is cumulative oxygen uptake rate at 
fed-batch cultivation processes. The developed noninvasive biomass estimation procedure was intentionally made to 
not depend on the selection of corresponding bioprocess/bioreactor parameters.

Conclusions:  The precision errors, since the bioprocess start, when inoculant was injected to a bioreactor, con-
firmed that the approach is relevant for online biomass state estimation. This included the lag and exponential 
growth phases for both E. coli and S. cerevisiae. The suggested estimation procedure is identical for both cultures. This 
approach improves the precision achieved by other authors without compromising the simplicity of the implementa-
tion. Moreover, the suggested approach is a candidate method to be the microorganisms’ culture invariant approach. 
It does not depend on any numeric initial optimization conditions, it does not require any of bioreactor parameters. 
No numeric stability issues of convergence occurred during multiple performance tests. All this makes this approach 
a potential candidate for industrial tasks with adaptive feeding control or automatic inoculations when substrate feed-
ing profile and bioreactor parameters are not provided.
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Background
Biotechnology industry development over the last years 
made quality assurance more stringent for pharmacy 
production [1]. As a tool to resolve process data distor-
tion and prevent operator from accidently making mis-
takes, bioengineering solutions help to automate tasks, 
which results in rise of cultivation process performance 
and quality. To strengthen product quality, to more effi-
ciently acquire coefficient values, to improve safety and 
flexibility of adaptive feedback control, the soft/noninva-
sive sensors [2] become a rational choice for development 
of sustainable engineering solutions. Implementation of 
feedback control system requires a feedback signal from 
soft sensors or estimators that provide parameters [3], 
which are unavailable to be directly measured online [4]. 
The control algorithm and the feedback signal consider 
the product and the main characteristics of bioprocess 
parameters—the biomass concentration and the specific 
growth rate [5, 6].

This study delves into biomass estimator development 
based on stoichiometric parameters and Luedeking–Piret 
model. The cell’s yields and stoichiometry both form a 
generic information, which is an acceptable candidate 
to be included in estimators when the microorganisms 
culture does not change from experiment to experi-
ment. Depending on stoichiometry, the estimator of bio-
mass concentration can be used to automatically inject 
the inoculant solution at a predefined level of the opti-
cal density in bioreactor medium. At this point, cumula-
tive oxygen uptake rate signal from an off-gas analyzer is 
informative to determine the biomass concentration.

The biomass estimator described in this study includes 
optimization algorithm, which returns the stoichiomet-
ric parameters of the controlled culture. The algorithm 
refers to several optimization criteria and is based on a 
gray box model originating from Luedeking–Piret model. 
Then offline maximization of entropy leads to satisfac-
tory parameters values for estimation procedure, which 
is then applied to Escherichia coli bacteria and S. cer-
evisiae yeast cultures. In other words, the stoichiometry 
optimization algorithm must be performed once for each 
strain to determine the necessary coefficients. These 
coefficients can be later used in the subsequent experi-
ments to estimate biomass concentration online, unless 
the strain does not change. Such offline analysis can be 
considered as an estimator tuning algorithm for a specific 
microorganisms’ culture.

The “Materials and methods” section describes the 
materials, strains and the bioreactor system operat-
ing conditions. The “Comparative analysis of biomass 
estimators” section reviews literature references of the 
off-gas analysis approaches and introduces the motiva-
tion for this study. The “General mathematical model of 

stoichiometric parameters estimation” section layouts 
the derivation of the bioengineering approach for both 
the offline (stoichiometry) analysis and the online (bio-
mass concentration) analysis stages. It also resolves a 
general formulation of the oxygen consumption for bio-
mass maintenance coefficient, which is relevant for both 
E. coli and S. cerevisiae cultures. The “Experimental vali-
dation” section provides experimental proof of the devel-
oped stoichiometry coefficients offline identification and 
the biomass concentration online estimation algorithms. 
The “Conclusions” section discusses the results and con-
cludes the final statements of this study.

Materials and methods
Cell strain’s
Four types of strain cultivation were analyzed in this 
work to verify biomass estimation. S. cerevisiae (no 
DY7221) strain was used as representative of yeasts 
cells. The recombinant strains E. coli BL21(DE3) pET9a-
IdeS, E. coli BL21 (DE3) pET21-IFN-alfa-5 (cloning of 
fused gene into bacterial systems with strong bacterio-
phage T7 promoter, pET21a + plasmid) [7] and E.coli 
BL21(DE3) pLysS [8] were used in bacterial cultivations.

Medium and culture conditions
In order to check biomass estimator’s reliability and accu-
racy, data were collected from different cell strains which 
have been cultivated in multiple different R&D laborato-
ries, including the laboratory of bioprocessing modeling 
and management in Kaunas University of Technology. 
Saccharomyces cerevisiae (no DY7221) strain was cul-
tivated in the standard nutrient medium (YPD) [9, 10], 
which contained 1% yeast extract, 2% Bacto peptone, and 
0.1% glucose. The feed solution contained 600 g/kg glu-
cose which increased the solution density to 1.21 g/l.

The medium temperature was maintained at 30  °C 
and it was monitored by using temperature sensor 
“Pt100”, and pH was kept constant at 4.9 by addition of 
NaOH(aq) [11]. Dissolved oxygen tension DOT in the 
bioreactor was measured by oxygen electrode Mettler 
Toledo and controlled by shifting stirrer speed from 
230 to 600 rpm. The DOT set point was chosen as 30% 
of air saturation. The air flow was kept around 4  l/min 
and measured by a mass air flow sensor. The off-gas from 
bioreactor was measured online by BlueSens gas ana-
lyzer (BCpreFerm, BlueSens, Herten, Germany), which 
has O2, CO2 and pressure sensors. The culture broth 
mass was measured online with balanced reactor ves-
sel which contained load cell weight sensor. The initial 
substrate concentration in the bioreactor was equal to 
zero, S = 0  g/kg. Hence, after inoculation the substrate 
solution feeding was started. The cultivation process was 
performed in 5 l bioreactor.



Page 3 of 17Urniezius et al. Microb Cell Fact          (2019) 18:190 

The cell strain of E. coli BL21 (DE3) pET21-IFN-alfa-5 
was cultivated in 7 l bioreactor. Cultivation medium was 
based on minimal mineral medium, which was made of 
46.55  g potassium dihydrogen phosphate, 14  g ammo-
nium phosphate dibasic, 5.6  g citric acid monohydrate, 
3 ml of concentrate antifoam, 35 g magnesium sulphate 
heptahydrate, 105  g D (+) glucose monohydrate. The 
initial volume of medium was 3.7  kg. At the cultivation 
process the environment parameters were kept con-
stant. The temperature setpoint was 37  °C, DOT set 
at 20% of air saturation and pH kept at pH 6.8 by addi-
tion of NaOH(aq). The stirrer rpm range was from 800 
to 1200  rpm, the air flow rage was from 1.75 to 3.75  l/
min. In order to increase oxygen transfer rate during 
cultivation process, pure oxygen flow was provided to 
bioreactor at range from 0 to 7.5 l/min. The off-gas from 
bioreactor was measured online by BlueSens.

The other cell strain of E. coli BL21 (DE3) pET9a-IdeS 
was cultivated in 15  l bioreactor. Cultivation medium 
based as minimal mineral medium. At the cultivation 
process the environment parameters: temperature set 
point was 37 °C, DOT set at 30% of air saturation and pH 
kept at pH 6.98 by addition of NaOH(aq). The stirrer rpm 
range was from 300 to 750  rpm, the air flow range was 
from 0.3 to 15 l/min. During the cultivation process pure 
oxygen flow was provided to bioreactor at range from 0 
to 7.5  l/min. The off-gas from bioreactor was measured 
online by BlueSens.

For diversity of validation, the fourth cell strain was E. 
coli (BL21(DE3) pLysS) [8]. The cultivation medium used 
as minimal mineral medium composed with (NH4)2SO4, 
2.46 g/l; NH4Cl, 0.5 g/l; NaH2PO4 × H2O, 3.6 g/l; Na2SO4, 
2 g/l; K2HPO4, 14.6 g/l; (NH4)2-citrate, 1 g/l; 1 M MgSO4 
solution, 5  ml/l; trace elements solution, 2  ml/l; and no 
glucose. Initial masses of all cultures were 5 kg. The glu-
cose solution and initial substrate concentration at the 
bioreactor used same as at cultivation with yeasts, pH 
kept constant at pH 7 and temperature was regulated to 
30  °C. Dissolved oxygen tension DOT was measured by 
an amperometric oxygen electrode (Mettler–Toledo) and 
the DOT set point was 30% of the saturation. The size of 
bioreactor was 15 l working volume (Biostat C, Sartorius 
Stedim Biotech) and the stirrer speed varied from 100 to 
1400 rpm.

Comparative analysis of biomass estimators
In order to adaptively control and monitor chemical or 
biotechnological process, it is mandatory to implement 
a data collection system that provides desired variables 
at real time with acceptable precision and performance. 
This requires corresponding equipment, which may 
be unaffordable, not implementable in system or the 
required instrument doesn’t exist. Hence, the better 

alternative is to use soft or noninvasive sensors, which 
collect measurable variables and estimate unmeasurable 
parameters [2, 12]. Especially in biotechnology processes, 
there are complex relationships between process and 
variables, so the best way to infer online unmeasurable 
parameters is to use corresponding estimators [4].

Over time, the studies of both bioprocesses and indus-
trial production perspectives have shown that a biomass 
estimator requires data, which is closely related to bio-
mass growth rate and biomass concentration. It can be 
indirectly measured online, with well-established and 
validated devices and soft sensors [4, 13], which are still 
in development. Oxygen uptake rate (OUR) and car-
bon dioxide production rate (CPR) are directly related 
to biomass growth rate and biomass concentration [14, 
15]. Oxygen uptake rate (OUR) and carbon dioxide 
production rate (CPR) data for estimator must be com-
puted from online signals that are reliable and meas-
ured directly in bioreactor system. These signals are the 
concentration of O2 and CO2 in the off-gas [16]. The 
proposed noninvasive biomass concentration estima-
tion procedure was intentionally made to not depend 
on the selection of bioprocess/bioreactor parameters. 
The approach is valid for aerobic cultures as long as it is 
possible to obtain the off-gas measurements of sufficient 
quality.

The main model, dedicated to biomass concentra-
tion estimation in this work, is a Luedeking–Piret model 
derived from the stoichiometric equations for oxygen 
consumption. It represents relationship between biomass 
X growth/maintenance and oxygen uptake rate in biore-
actor [14, 15]:

Stoichiometric coefficients α and β represent cell’s 
metabolisms of oxygen consumption and correspond to 
the yield coefficients of these biochemical conversions. 
In Eq.  (1) coefficient α means specific cell’s oxygen con-
sumption yield ( α ≡ Yo2/X ) for growth and β is a model 
parameter termed as oxygen consumption for mainte-
nance ( β ≡ mo2/X ) [17–20]. The generic structure of the 
Eq.  (1) that describes the process does not include any 
strain specific information and there are no any initial 
conditions assumed for the values of both α and β.

Simutis and Lübbert (2006) improved a hybrid model 
estimator [21]. The main improvement of a dynamical 
mathematical model was a modification of mass bal-
ance equation to the new one, which was based on the 
oxygen uptake rate OUR, the carbon dioxide rate CPR 
and the base consumption rate BCR [22]. In order to 
further improve hybrid model’s capacity, Kalman filter 
(EKF) was introduced to biomass estimations [23]. The 
new improved hybrid model produced better results and 

(1)OUR(t) = α · X ′(t)+ β · X(t)
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accuracy, but general drawbacks remained, estimator’s 
complexity, a lot of data required for artificial neural net-
work training and biomass estimation offline with a large 
execution duration [22–24]. In 2010, Simutis and Lüb-
bert improved biomass estimator with cumulative vari-
ables that made model more conventional. The estimator 
procedure was transformed to a simpler system.

When comparing stoichiometry biomass estimators’ 
mathematical models to the hybrid model estimator 
approaches, the latter contains more main state variables: 
biomass (X), oxygen uptake rate (OUR), specific biomass 
growth rate (µ), broth weight (w), carbon dioxide produc-
tion rate (CPR), base consumption and other model coef-
ficients. Additionally, additional equations and a fuzzy 
expert system are required. The latter gives an input to 
the combination of a dynamical mathematical model 
(DMM) represented by a set of nonlinear ordinary differ-
ential equations with an artificial neural network (ANN) 
[24]. The main advantage of the stoichiometry biomass 
estimator, compared to hybrid model, is its simplicity 
and accuracy. As hybrid model consists of several mod-
eling systems, a common problem of estimation arrives 
from artificial neural network (ANN) training [21, 23, 
24]. Meanwhile, stoichiometry biomass estimator was 
based only on OUR and stoichiometric parameters α and 
β, which both were kept static for a particular cell strain. 
This led to ability to calculate biomass online [14, 22–24, 
28]. A general comparison of different biomass estima-
tors is presented in Fig. 1. This work’s biomass estimation 
approach is depicted by Fig. 1d. The estimation methods, 
which are based on gas consumption stoichiometry, are 

shown in Fig.  1e, f. The main differences consist of the 
approach picked, its complexity and the number of input 
signals and prerequisite parameters or initial conditions 
required. The main purpose of this paper is to show that 
biomass estimation can be treated from the fundamental 
point of view based on the stoichiometry Eq. (1). The idea 
comes from entropic and Bayesian inference approaches 
involving integral optimizations [29, 30]. The focus lays 
on the implementation, which can be not only used in 
scientific R&D laboratories, but also on the industrial 
plants level.

This paper presents a generic biomass estimation rou-
tine that is suitable for determination of biomass state 
in high diversity of bioreactors (Fig.  2) with potentially 
wide variety of industrial microorganisms. Prior to bio-
mass determination, it is necessary to identify cell strain’s 
stoichiometry parameters α and β, which both describe 
oxygen consumption by a microbial culture. This is 
accomplished by offline analysis Fig. 3 (stage A).

Afterwards, industrial scale cultivation processes 
reuse information about strain information for corre-
sponding biomass concentration estimation in online 
analysis (stage B), as shown in Fig.  3. In order to 
achieve better accuracy at strain stoichiometry analy-
sis during upstream development, it is recommended 
to identify α and β parameters at the laboratory scale 
bioreactors, Fig.  3 (stage A). This way, strain stoichi-
ometry analysis, based on “ground-truth” of stage A, 
is economically beneficial, and data from cultivation 
process consists of less disturbances in more flexible 
control environment.

Fig. 1  Comparison of biomass estimators: a Lübbert [21], b Achle [25], c Simutis [22], d biomass estimation of this text, e Davis [26], f Barrigon [27]
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General mathematical model of stoichiometric 
parameters estimation
During the cultivation process, the real-time data col-
lected from the devices has interference and distur-
bances, which may cause distortion of parameters and 
estimated values [14]. Simutis and Lübbert [4] stated “the 
reason for cumulating the original signals is to improve 
the signal-to-noise ratio (SNR) and thus increasing the 
information content about the process. Additionally, as 
the biomass and its metabolic products are accumulated 
during the cultivation, these masses are better correlated 
with the cumulative signals of OUR and CPR”. The main 
method of the current text is also based on the integral 
approach, which can be considered as a filter eliminat-
ing noise [22]. Hence, the Luedeking–Piret model Eq. (1) 
outcomes are being protected from disturbances by inte-
grating it:

(2)

∫ t

t0

OUR
(

t∗
)

dt∗ = α ·

∫ t

t0

X ′
(

t∗
)

dt∗ + β ·

∫ t

t0

X
(

t∗
)

dt∗.

According to data from bioprocesses and previous 
experience, the stoichiometric parameter β is assumedly 
not a process constant. During the cultivation, param-
eter β—oxygen maintenance coefficient for biomass, 
increases due to biomass concentration growth. The 
phenomenon of increasing value of parameter β can be 
explained by the fact that the consumption of oxygen for 
biomass maintenance also includes the generation of the 
product and other factors. Such situation occurs at the 
end of the exponential phase of a microbial cultivation 
(for recombinant protein synthesis) when the induction 
(e.g., with isopropyl-d-1-thiogalactopyranoside/IPTG) 
is performed and the synthesis of the product increases 
noticeably. As a result, oxygen consumption for biomass 
maintenance also increases [31, 32]. The parameter β 
consists of two additive terms

where YXO is oxygen consumption for cells breathing 
and YPO is oxygen consumption for product formation. 

(3)β =
1

YXO
+

1

YPO
;

Fig. 2  Bioprocess technology development workflow

Fig. 3  Biomass estimator’s structure scheme of different estimation stages
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Consequently, biomass has linear/polynomial relation-
ship to parameter β which is directly dependent on bio-
mass concentration.

The observational data used for proposed biomass 
estimation was obtained from the processes that involve 
recombinant protein expression. As it can be seen from 
the Eq.  (3), the parameter β accounts for both, biomass 
and product, yields. This parameter may exhibit different 
behavior depending on the process phase and the strain/
product involved. However, comprehensive comparison 
of various strains with respect to the impact, that particu-
lar product has on the biomass estimator performance, 
or to explore the effect on metabolic noise debugging in 
strain engineering, goes beyond the scope of this study.

To remove the assumption that the stoichiometric 
parameter β is a function of a biomass, this parameter 
is expressed as a function of time in the mathematical 
model. Hence, Eq. (3) is rewritten to linear regression of 
time:

where k1 and k2 are linearly dependent mathematical 
coefficients. When bioprocess is at lag phase or early 
phase of exponential growth (when biomass concentra-
tion is relatively low), the β parameter is extremely small 
and negligible. Only after induction or specific value of 
biomass concentration, oxygen consumption for mainte-
nance becomes appreciable. Hence, during a time prior 
to fact when the Eq. (4) comes into effect, the parameter 
β should be set to zero in the estimation procedure. At 
that moment the biomass concentration reaches a value 
from which the consumption of oxygen for biomass 
maintenance becomes significant:

Then parameter β becomes

where ti is the duration from cultivation process start to 
the time when amount of biomass reaches value resulting 
in appreciable oxygen maintenance, or when induction is 
performed and product formation noticeably increases, 
or when stoichiometry parameter β is no longer zero [9, 
31, 32]. In order to have full mathematical model for-
mula, main balance Eq.  (2) has parameter β replaced in 
the linear regression Eq. (7):

(4)β = k1 ∗ t + k2;

(5)0 = k1 ∗ ti + k2
yields
−→

(6)k2 = −k1 ∗ ti.

(7)β = k1 ∗ t − k1 ∗ ti;

(8)

∫

t

t0

OUR
(

t
∗
)

dt∗ = α ·

∫

t

t0

X
′
(

t
∗
)

dt∗ +

∫

t

t0

k1 ·
(

t
∗ − ti

)

· X
(

t
∗
)

dt∗.

Offline analysis of stoichiometry parameters (stage A)
Prior to the estimation of the biomass, specific cell 
strain’s stoichiometric parameters must be identified dur-
ing offline analysis. There are few compulsory inputs to 
approach this task.

•	 Model fitting procedure requires offline observa-
tions: dry cell weight (DCW) or optical density OD 
value (in o.u.) multiplied by a coefficient of biomass 
concentration (approximately 0.4 g/l/o.u.) [33];

•	 Process duration time since cells’ inoculation to bio-
reactor, in hours;

•	 Oxygen uptake rate (OUR) data since the inocula-
tion;

For model fitting a chosen mathematical expression 
is equated to gray box model since the collected experi-
mental data is combined with fundamental knowledge 
about bioprocess [34]. Considering that the bioprocess 
consists of two main parts, prior to induction and after 
it, the parameters fitting procedure is based on two inde-
pendent gray box models. The first one covers the first 
two cultivation process phases: the lag and exponential. 
During these phases the amount of biomass is low and 
materials, resources concentrate to biomass growth [35]. 
Hence, oxygen requirement for biomass maintenance is 
minimum and stoichiometric parameter β is negligible:

In the Eq.  (9) the variable ti is the time of the induc-
tion or the time when biomass reaches a quantity where 
oxygen usage for maintenance is appreciable. The sec-
ond cultivation stage represents the biomass growth 
deceleration and increasing product formation. In this 
cultivation phase, additional term comes into effect, 
oxygen consumption for maintenance and product for-
mation, known as stoichiometric parameter β. To prop-
erly describe second gray box model, the induction time 
or time when biomass concentration reaches specific 
amount must be identified. Throughout this period the 
maintenance term becomes significant and can’t be negli-
gible. After applying maintenance parameter to a model, 
the second gray box model’s expression is generalized to

In summary, the Eqs. (10) and (11) both yield the con-
ditional definition of cumulative oxygen uptake rate 
function:

(9)
∫ ti

t0

OUR
(

t∗
)

dt∗ = α ·

∫ ti

t0

X ′
(

t∗
)

dt∗,

(10)

∫

t

t0

OUR
(

t
∗
)

dt∗ = α ·

∫

t

t0

X
′
(

t
∗
)

dt∗ +

∫

t

t0

k1 ·
(

t
∗ − ti

)

· X
(

t
∗
)

dt∗.
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In Eq. (11) the last sum of products is the expression of 
left Riemann sum [36], i.e. 

t

∫
t0

k1 · (t
∗ − ti) · X(t

∗)dt∗ ≈
∑

m

l=i
k1 · (tl − ti) · X(tl) ·�tl,l−1 , when time’s t sample is 

indexed by m. Discrete DCW values define variable 
Xl ≡ X(tl), where l ∈ [1, nm] , nm is the total number (e.g. 
hourly) of offline sampling intervals with index m and 
X0 ≡ X(t0) is an initial biomass concentration after inoc-
ulation into bioreactor.

Procedure for offline analysis of stoichiometry parameters
The prediction value of the cumulative OUR model [37] 
for Eq. (11) is

Then the posterior distribution for m-th offline sample 
is

where every sampled prediction m has constant variance 
σ 2
cOUR.
Prior distribution also has the form of Gaussian distri-

bution [38] 

where cOUR∗
m is the m-th observation value of the cumu-

lative OUR and its unique variance is σ 2
cOUR,m.

In previous work [37] the uncertainty of prior distribu-
tion was assumed to be equal to the square of observed 
value, i.e. σ 2

cOUR,m was assumed to be proportional to 
cOUR∗2

m  . However, this assumption is not quite rational 
from practical considerations based on this work expe-
rience when deriving a generic estimator for both E. coli 
and yeast cultures. It appears that the assumption of 
σ 2
cOUR,m ∼ cOUR∗2

m  is just a special case, which has even 
more general form. Interestingly this form matches the 
form of Monod formulation [39] applied to uncertainty, i.e.

where scenario with KX2 = 0 resembles least squares 
approach, i.e. all samples’ relative weights become equal, 
and KX2 → ∞ means that σ 2

cOUR,m ∼ cOUR∗2
m  as in 

(11)
{

cOUR(t ≤ ti) ≡
∫ t
t0
OUR(t∗)dt∗ = α · (X(t)− X0); t ≤ ti;

cOUR(t > ti) ≡
∫ t
t0
OUR(t∗)dt∗ ≈ α · (X(t)− X0)+

∑m
l=i k1 · (tl − ti) · X(tl) ·�tl,l−1; t > ti.

(12)cOURm ≡

{

cOUR(tm ≤ ti) = α · (Xm − X0);
cOUR(tm > ti) = α · (Xm − X0)+

∑m
l=i k1 · (tl − ti) · Xl ·�tl,l−1;

(13)Pposterior(cOURm) ∼ N
(

cOURm, σ
2
cOUR

)

,

(14)Plikelihood(cOURm) ∼ N
(

cOUR∗
m, σ

2
cOUR,m

)

,

(15)σ 2
cOUR,m = σ 2

max

X2
m

KX2 + X2
m

,

previous work [37]. In other words, empirical coefficient 
KX2 is a “weight” coefficient between the two additive 
terms of optimization criterion. The first term is the least 
squares criterion and the other is “squared MAPE” crite-
rion as in [37]. Another note about Monod Eqs. (15) and 
(12) is that the relationship of σ 2

cOUR,m ∼ σ 2
X ,m is valid, i.e. 

the uncertainty of cumulative OUR is proportional to the 
uncertainty of biomass variable.

To rationally prepare Eq.  (15) for simplified numeric 
operations avoiding infinities when estimating values, an 
intrinsic variable Kexp expression replaces KX2 →

1−Kexp

Kexp
 

and transforms Eq. (15) to

The fact, that σ 2
max and Kexp both are positive scalar 

values and do not depend on the index m of a sampling 
interval, allows to simplify Eq. (16) to

Equation  (17) exposes the physical meaning of Kexp . 
The scenario with Kexp = 0 recovers σ 2

cOUR,m ∼ X2
m as 

in [37]. The scenario with Kexp = 1 recreates the least 
squares method as in [38, 40]. Both scenarios show that 
Kexp is an exponential weight, which constructs a hybrid 
criterion for both least squares and the MAPE squared. 
Later in the text, the experimental validation will show 
that there exists a rational empirical value of Kexp , which 
enables estimation of the biomass concentration, with an 
acceptable precision, for both yeast and E. coli cultures 
since the beginning of the cultivation right after the cul-
ture was inoculated to a bioreactor.

After gray box model is identified and hybrid criterion 
derived, the next step is to use optimization approach to 
find the stoichiometry parameters. The main equation 
solving for unknown parameters comes from the maxi-
mization of entropy [37, 39] based on Eqs. (13), (14) and 
(17)

(16)

σ 2
cOUR,m = σ 2

max

X2
m

1−Kexp

Kexp
+ X2

m

yields
−→ σ 2

max

X2
m · Kexp

1− Kexp + X2
m · Kexp

,

(17)σ 2
cOUR,m ∼

X2
m

1− Kexp + X2
m · Kexp

.
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Hence, at the optimization method, which is shown at 
the Eq.  (18), the whole S expression is maximized, and 
unknown stoichiometry parameters are found by solving 
partial derivative of Eq. (18) with respect to α and k1

Equation (19) yields the linear system of two equations

where Eq. (20) parameters are:

Equations (20)–(26) finalizes the offline estimation of 
stoichiometry parameters, which are then later used for 
online estimation of biomass concentration. However, 

(18)

S = −

m≤i
∑

m=1

(cOURm − α · (Xm − X0))

X2
m

Kexp·X2
m+(1−Kexp)

2

−

nm
∑

m=i+1

(

cOURm − α · (Xm − X0)−
∑m

l=1 k1 · (tl − ti) · X(tl) ·�tl,l−1

)2

X2
m

Kexp·X2
m+(1−Kexp)

.

(19)

{

∂S
∂α

= 0;

∂S
∂k1

= 0.

(20)
{

α · B+ k1 · C = A;
α · E + k1 · F = D;

.

(21)A =

nm
∑

m=1

(Xm − X0) · cOURm

X2
m

Kexp·X2
m+(1−Kexp)

;

(22)B =

nm
∑

m=1

(Xm − X0)
2

X2
m

Kexp·X2
m+(1−Kexp)

;

(23)

C =

nm
∑

m=i+1

(Xm − X0) ·
∑m

l=1 (tl − ti) · X(tl) ·�tl,l−1

X2
m

Kexp·X2
m+(1−Kexp)

;

(24)

D =

nm
∑

m=i+1

cOURm ·
∑m

l=1 (tl − ti) · Xl ·�tl,l−1

X2
m

Kexp·X2
m+(1−Kexp)

;

(25)

E =

nm
∑

m=i+1

(Xm − X0) ·
∑m

l=1 (tl − ti) · Xl ·�tl,l−1

X2
m

Kexp·X2
m+(1−Kexp)

;

(26)F =

nm
∑

m=i+1

(
∑m

l=1 (tl − ti) · Xl ·�tl,l−1

)2

X2
m

Kexp·X2
m+(1−Kexp)

.

the variable ti has no direct meaning with yeast cultures, 
so it must be dealt with separately. First, the specific time 
when the maintenance coefficient becomes appreciable is 
analyzed in the next subsection.

Identification of yeasts’ specific time for maintenance
Variable ti at Eq. (12) is the time of induction or the time 
when biomass concentration reaches a specific amount 
when oxygen maintenance for cells becomes non negli-
gible. In the case of cultivation processes of E. coli, the 
induction time is known, i.e. it can be defined by the time 
moment when IPTG solution is injected into bioreac-
tor. In the cultivation process of S. cerevisiae yeasts the 
IPTG solution was not used. Hence, the variable ti defines 
the time when biomass concentration reaches a specific 
value when maintenance coefficient becomes noticeable. 
The search for ti utilizes the convex optimization method 
and maximization of entropy [37, 41]. The optimization 
procedure is depicted in Fig. 4.

The knowledge of the specific time ti enables the bio-
mass concentration estimation. However, the specific 
time ti is not known in advance prior to online experi-
ment with yeast cells, because it has just a theoretical 
meaning in this case. Therefore, a generic relationship 
between the maintenance coefficient value and the bio-
mass concentration will be inferred in the next subsec-
tion. Such a generic form of maintenance coefficient will 
enforce online estimation without dependence on the 
type of the microbial culture. Moreover, the value of the 
specific time ti becomes irrelevant for the online estima-
tion procedure.

Identification of maintenance coefficient parts
After optimization of stoichiometry parameters, which 
had determined unknown parameters of the mathemati-
cal method, the next step is to validate those identified 
parameters with experimental data. Prior to comparison 
of theoretical and experimental data, the mathematical 
model, as in Eq.  (7), must be reconstructed so that β is 
no longer a function of time and still satisfies the actual 
behavior of biotechnological process. The stoichiometric 
parameter β directly depends on biomass concentration

(27)
β(X) ≡ β(X(t)) = kβ2 · X

2(t)+ kβ1 · X(t)+ kβ0;
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The expression of parameter β(X) represents a parab-
ola regression of biomass in the case of the E. coli strain 
Fig. 5a. Meanwhile, S. cerevisiae oxygen consumption for 
maintenance is dependent linearly on biomass concen-
tration, thus kβs2 = 0,

In Eqs.  (27) and (28) regression coefficients connect 
maintenance coefficient β to biomass variable. In both 
culture cases, stage A helps to obtain β values from linear 
regression based on Eq. (7) output

(28)
βSaccharomyces(X) ≡ βSaccharomyces(X(t)) = kβs1 · X(t)+ kβs0;

(29)β(Xm) ∼= β(tm) = k1 ∗ (tm − ti).

The assumed relationship of β(X) considering biomass 
concentration is presented in Fig. 5.

According to data from cultivation processes of E. coli 
in Fig.  5, the stoichiometric parameter of cell mainte-
nance can be assumed as directly dependent on biomass 
in parabolic manner. At the cultivation processes of E. 
coli, the induction of IPTG, which initiates product syn-
thesis, may cause nonlinear dependence of oxygen con-
sumption on biomass maintenance. Based on Eqs.  (27) 
and (28), it is possible to calculate strain’s specific bio-
mass concentration ( Xspecific ) when oxygen consumption 
for maintenance is no longer negligible. This is done by 
setting Eqs. (27) and (28) to zero and solving them for the 
specific biomass concentration Xspecific

Fig. 4  The workflow of structural scheme for parameter identification

Fig. 5  Dependence of oxygen consumption for maintenance on biomass concentration, a E. coli, b Saccharomyces cerevisiae 
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The workflow of both stoichiometry and biomass esti-
mations improves structure, as in Fig. 3, to the shape of 
the one in Fig. 6.

The solution of Eq. (30) identifies the specific biomass 
concentration Xspecific and finalizes the offline estima-
tion of stoichiometry coefficients for a strain. After the 
stoichiometry coefficients are found in stage A, a generic 
procedure for online biomass estimation can be per-
formed independently on the knowledge of bioreactor 
parameters. In conclusion, β , as in Eq.  (27), transforms 
Eq. (1) into

In spite of the fact that Eq. (31) form is the third order 
function, it is still the same equation as Eq.  (1). How-
ever, it was inferred by the estimation procedure and 
the observation data in Fig.  5. Variable β manipulation 
compensates the effect of biomass concentration X on 
β and makes all Eq.  (31) coefficients linearly dependent 
and constant throughout the course of the experiment. 
Eventually, this serves as a prerequisite to the simplified 
generic procedure for estimation of biomass concentra-
tion, coming in the next subsection.

Online estimation of biomass concentration (stage B)
In this paper, estimation of biomass concentration is 
based on stoichiometric parameters and cumulative oxy-
gen uptake rate cOUR. When stoichiometric parameters 
are discovered in stoichiometry estimation, stage A, or it 
was given, only one input from bioreactor system, cumu-
lative oxygen uptake rate, is necessary to estimate the bio-
mass state. This procedure is depicted by stage B (online 
analysis) in Fig.  6. The block of “biomass estimation”, 
Fig. 6, consists of two main scenarios which both return 
biomass concentration at a time instance with index m. 

(30)β
(

Xspecific

)

≡ β(X(t)) = 0;

(31)
{

OUR(t) = α · X ′(t)+ kβ2 · X
3(t)+ kβ1 · X

2(t)+ kβ0 · X(t),X(t) > Xspecific;
OUR(t) = α · X ′(t),X(t) ≤ Xspecific.

Prior to the specific biomass Xspecific level is reached, i.e. 
when oxygen consumption for maintenance is very low 
or negligible, biomass state estimator equation is

After biomass concentration exceeds Xspecific during 
the second scenario, i.e. oxygen consumption becomes 
noticeable, the stoichiometric parameter β comes into 
effect as a function of biomass concentration. Equa-
tion  (12) helps to derive the approximate estimator for 
biomass state, as follows

(32)Xm =
cOURm

α
+ X0.

(33)

Xm
∼=

cOURm −
∑m−1

l=i β(Xl) · Xl ·�tl,l−1

α
+ X0.

Fig. 6  Biomass estimation workflow

The variable X0 , as in Eqs. (32) and (33), is an initial bio-
mass concentration at the time of inoculation into bioreac-
tor. Its value can be either a dry biomass measurement value 
or optical density OD value (in o.u.) multiplied by a coeffi-
cient of biomass concentration (approximately 0.4 g/l/o.u.).

This subsection initializes the online biomass estima-
tion procedure (Fig.  7), which can be used in biotech-
nological industrial practices. The suggested approach 
does not require the bioreactor-dependent parameters, it 
serves as a good candidate to be applied to more micro-
bial strains and the experimental validation, in the com-
ing section, will show that such an approach can be used 
for biomass estimation since the time moment of inocu-
lation into bioreactor.

Experimental validation
Validation performance indicators
Both mean absolute error (MAE) and mean absolute per-
centage error (MAPE) were used as indicators to evaluate 
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the estimation results. MAE and MAPE methods both 
evaluate the errors between estimated and observed bio-
mass values of a cultivation process. MAE approach is 
defined as follows [42]:

where n is the number of data counts, ŷi is estimation 
result, which is compared to yi , the observed value from 
the cultivation process. Mean absolute error represents 
average vertical distance between both values. MAPE 
method can be expressed as follows [43]:

The mean absolute percentage error is a statistical 
measure representing the accuracy of a forecast system, 
in percentage. Root mean square error represents the 
square root of residuals of the differences between pre-
dicted values and observed values. RMSE method’s for-
mula are as follows [42]:

(34)MAE =

∑n
i=1

∣

∣ŷi − yi
∣

∣

n
,

(35)MAPE =
100%

n

n
∑

i=1

∣

∣

∣

∣

ŷi − yi

yi

∣

∣

∣

∣

.

(36)RMSE =

√

∑n
i=1

(

ŷi − yi
)2

n
.

Comparative analysis of experimental results
Experimental biomass measurements and data of cumu-
lative oxygen uptake rate cOUR from fed-batch experi-
ments of E. coli and S. cerevisiae were taken from [8], 
experiments led by authors of this text and industrial 
R&D laboratories. There were three cultivations of E. coli 
cells in 15 l bioreactor with limited substrate feed [8] and 
two R&D laboratory cultivations of S. cerevisiae yeasts 
in 5  l bioreactor with limited substrate feed. Addition-
ally, there was one cultivation of E. coli in 12 l bioreactor 
with limited substrate feed and there were 15 cultiva-
tions in 5  l bioreactor, out of which 7 cultivations were 
with dosed substrate feeding. As the first step, all cultiva-
tion data was analyzed in the stoichiometric parameters’ 

Fig. 7  Workflow of online biomass estimation (stage B)

Table 1  Stoichiometric parameters of cell strains

Escherichia coli Saccharomyces cerevisiae

α = 1.01 α = 1.35

Confidence Interval ∓0.0186 Confidence Interval ∓0.149

kβe2 = 7.2 · 10−5 kβs2 = 0

kβe1 = −2.9625 · 10−3 kβs1 = 2.3851 · 10−3

kβe0 = 4.27047d · 10−2 kβs0 = −1.5014 · 10−2

Xspecific = 20.6g/l Xspecific = 6.29g/l

Kexp = 0.4
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estimation (stage A). The estimation procedure ignored 
both metabolism pathways, occurring during dosed sub-
strate feed cultivations, and increasing product forma-
tion due to IPTG injections. The results of offline analysis 
of stoichiometric parameters are present in Table 1.

The tuning coefficient Kexp was identified empirically 
and its value of 0.4 showed acceptable outcome for the 
performed experiments. However, S. cerevisiae stoichio-
metric results come from just two cultivation experi-
ments. Therefore, the results might still be improved 
when more experimental data becomes available in the 
future.

In industrial processes, strain’s stoichiometric param-
eters are given, unless they were estimated using offline 
analysis, stage A. Then biomass concentration is calcu-
lated iteratively using both Eqs. (32) and (33) from cOUR 
signal (online analysis, stage B). This work’s biomass esti-
mation method used different cultivation experiments, 
with different cell strains, bioreactor volumes, type of 
substrates feeding solution, different IPTG induction 
time moment and their corresponding OD levels at IPTG 
injection, different substrate feeding limitations and dif-
ferent time of starting the substrate feed. Estimation 
results are shown in Table 2.

Seven experiments (#5–#11) were performed with 
dosed substrate feeding. Meanwhile the rest of experi-
ments had limited feeding with various combinations 
of control strategies described in [37]: multiple different 
substrate limited feedings prior to induction and after it.

The overall average MAE of biomass estimation since 
inoculation is 1.1  g/l and overall average MAE of bio-
mass estimation since feed start is 1.41  g/l. The overall 
average MAPE of biomass estimation since inoculation 
is 7.28% and overall average MAPE of biomass estima-
tion since feed start is 6.29%. Overall average RMSE 
value of S. cerevisiae cultivations is 0.5  g/l. RMSE value 
of E. coli cultivations with limited substrate feeding is 
1.26 g/l and for cultivations with dosed substrate feeding 
is 2.44 g/l. RMSE value of E. coli cultivations before sta-
tionary phase, when DCW reaches ~ 40 g/l (to compare 
with results in [22]) with limited substrate feeding, is 
1.07 g/l and for cultivations with dosed substrate feeding 
is 1.2 g/l. These results show that this approach improves 
the precision achieved in [22] without compromising the 
simplicity of the implementation. Offline analysis (stage 
A) execution lasted 2–15  ms and online analysis (stage 
B) calculations took 13–30  ms on a single core CPU in 
bioprocess engineering software tool dedicated for the 
purposes of this work. No initial conditions for numeric 

Table 2  Analysis of experiments for biomass estimation

No. Strain Bioreactor 
volume, l

MAE since inoculation 
g/l

MAE since feed 
start, g/l

MAPE since inoculation, 
%

MAPE 
since feed 
start, %

1 Escherichia coli 15 1.04 1.04 5.7 5.7

2 0.96 0.96 4.11 4.11

3 1.38 1.38 5.61 5.61

4 12 1.45 1.6 5.3 4.91

5 7 1.65 2.3 7.26 5.34

6 2.5 3.3 6.9 7

7 1.54 2.13 8.67 6.28

8 1.29 1.94 7.57 6.12

9 1.52 2.54 7.12 7.96

10 1.55 2.09 9.35 6

11 1.87 2.7 10.75 6.6

12 1.16 1.55 6.88 6.61

13 0.97 1.22 9.03 6.89

14 0.78 1.01 9.88 6.26

15 1 1.22 8.92 6.99

16 0.76 1 7.14 7.85

17 0.74 0.9 8.51 5.69

18 1.18 1.54 7.83 7.55

19 0.8 1.07 5.83 6.30

20 Yeasts 5 0.29 0.29 6.69 6.69

21 0.66 0.66 7.28 7.28
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optimization procedure were used. The speed of online 
estimation can be explained by the fact that the predic-
tion value of biomass concentration estimate is calcu-
lated once during the whole estimation procedure. There 
is no updating performed for the predicted value of bio-
mass. In the future, this optimization condition might be 
released though. The substrate feed was started from the 
beginning of cultivation process right after inoculation 
moment in the experiments #1–#3 and #20–#21, while 
for the rest of cultivations had their substrate feed started 
after 5–6  h since inoculations. The errors between 

off-line and on-line data mainly originate from offline 
measurements. Especially in #5–#19, because historically 
the accuracy of offline measurements was not of high pri-
ority during these experiments. Therefore, in the future 
the true ground truth of biomass concentration might 
testify that the approach suggested in this work has even 
higher overall precision than the one stated in above. All 
biomass state estimation results are shown at the Figs. 8, 
9, 10, 11, 12.

Conclusions
The suggested biomass estimation’s numeric approach 
using cumulative oxygen uptake rate signal showed no 
dependability on selection of the initial variable val-
ues for optimization procedures. This study assumed, 
by Pareto principle, that the proposed method is only 
dependent on stoichiometry parameters of the strain, i.e. 
the developed noninvasive biomass estimation proce-
dure was made to not depend on both the manipulation 
with a specific growth rate variable and the selection of 
corresponding bioreactor parameters. The precision 
errors, since the bioprocess start, when inoculant was 
injected to a bioreactor, confirmed that the approach 
is relevant for online biomass state estimation. This 
included the lag and exponential growth phases for both 
E. coli and S. cerevisiae. The experimental investiga-
tion of E. coli and S. cerevisiae cultures showed that the 
estimation procedure is identical for both cultures. The 
overall average MAE of biomass estimation since inocu-
lation is 1.1 g/l and the overall average MAPE of biomass 

Fig. 8  Biomass concentration estimation result with recombinant E.coli BL21(DE3) pLysS strain at 15 L bioreactor

Fig. 9  Biomass concentration estimation result with recombinant E. 
coli BL21(DE3) pET9a-IdeS strain at 12 l bioreactor
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estimation since inoculation is 7.28%. RMSE value 
of E. coli cultivations before stationary phase, when 
DCW reaches ~ 40 g/l (to compare with results of other 
authors) with limited substrate feeding, is 1.07  g/l and 
for cultivations with dosed substrate feeding is 1.2  g/l. 
These results show that this approach improves the 
precision achieved by other authors without compro-
mising the simplicity of the implementation. Moreover, 
the suggested approach is a candidate method to be the 
microorganisms’ culture invariant approach, it does not 
depend on any numeric initial optimization conditions, 
and it does not require any of bioreactor parameters. No 
numeric stability issues of convergence occurred during 
multiple performance tests. All this makes this approach 
a potential candidate for industrial tasks with adaptive 

feeding control or automatic inoculations when sub-
strate feeding profile and bioreactor parameters are not 
provided.

Neither numeric artifacts nor abrupt worst-case sce-
narios were experienced during both offline and online 
analysis of 21 experiments, out of which 7 ones were car-
ried out with dosed substrate feeding. The experiments 
executed in 5 l, 7 l, 12 l and 15 l bioreactor volumes. Feed 
start, inoculation, bioreactor medium, feeding limita-
tion and other conditions varied with no manual control 
or adjustment. This encourages the use of such estima-
tor in adaptive feedback control systems. Both online 
and offline estimations were tested on a single core 
CPU processing and each procedure took no more than 
30  ms when overall 1-min interval data was sampled 

Fig. 10  Biomass concentration estimation result with recombinant E. coli BL21 (DE3) pET21-IFN-alfa-5 strain at 7 L bioreactor with dosed substrate 
feeding
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from cumulative oxygen uptake signal, which makes the 
approach of practical use too. Finally, this estimator does 
require a usage of regular industrial gas analysis equip-
ment such as BlueSens etc.
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