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Abstract 

Background:  Pichia pastoris is a powerful and broadly used host for recombinant protein production (RPP), where 
past bioprocess performance has often been directed with the methanol regulated AOX1 promoter (PAOX1), and the 
constitutive GAP promoter (PGAP). Since promoters play a crucial role in an expression system and the bioprocess 
efficiency, innovative alternatives are constantly developed and implemented. Here, a thorough comparative kinetic 
characterization of two expression systems based on the commercial PDF and UPP promoters (PPDF, PUPP) was first 
conducted in chemostat cultures. Most promising conditions were subsequently tested in fed-batch cultivations. 
These new alternatives were compared with the classical strong promoter PGAP, using the Candida antarctica lipase B 
(CalB) as model protein for expression system performance.

Results:  Both the PPDF and PUPP-based expression systems outperformed similar PGAP-based expression in chemostat 
cultivations, reaching ninefold higher specific production rates (qp). CALB transcription levels were drastically higher 
when employing the novel expression systems. This higher expression was also correlated with a marked upregula‑
tion of unfolded protein response (UPR) related genes, likely from an increased protein burden in the endoplasmic 
reticulum (ER). Based on the chemostat results obtained, best culture strategies for both PPDF and PUPP expression sys‑
tems were also successfully implemented in 15 L fed-batch cultivations where qp and product to biomass yield (YP/X*) 
values were similar than those obtained in chemostat cultivations.

Conclusions:  As an outcome of the macrokinetic characterization presented, the novel PPDF and PUPP were observed 
to offer much higher efficiency for CalB production than the widely used PGAP-based methanol-free alternative. Thus, 
both systems arise as highly productive alternatives for P. pastoris-based RPP bioprocesses. Furthermore, the different 
expression regulation patterns observed indicate the level of gene expression can be adjusted, or tuned, which is 
interesting when using Pichia pastoris as a cell factory for different products of interest.
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Background
The non-conventional yeast Komagataella phaffii, widely 
known under the former name Pichia pastoris, is a distin-
guished host for recombinant protein production (RPP) 
[1–7] and metabolite production [8]. Among the many 
positive features that make P. pastoris a good choice for 
RPP, and historically one of the most relevant, is strong 
and tightly regulated expression based on the alcohol oxi-
dase 1 promoter (PAOX1) [9–12]. When using the PAOX1 
promoter, induction occurs in the presence of metha-
nol, whereas glycerol or glucose fully repress expression 
[13]. De-repression is not sufficient for significant gene 
expression; therefore, a simple recombinant protein pro-
duction process is typically divided into two phases. First, 
a glucose/glycerol-based batch phase, where a relatively 
high amount of biomass is generated without recom-
binant protein production. Subsequently, the metha-
nol feeding phase triggers strong PAOX1-driven protein 
production. However, such tightly controlled induction 
and strong expression levels by PAOX1 causes operational 
drawbacks due to the use of methanol, including high 
oxygen requirements and heat production, as well as 
increased costs derived from methanol storage and han-
dling [14, 15]. To address these challenges, mutated pro-
moter variants [16] or co-substrate feeding strategies had 
been employed [17].

In order to open new opportunities, innovative alter-
natives are constantly developed, evaluated and imple-
mented. In terms of promoter strength, the other 
methanol inducible promoters such as DAS1 and DAS2 
(PDAS1; PDAS2), demonstrate similar strength [18]. In 
addition to the numerous attempts that had been made 
to modify PAOX1 regulation by mutagenesis or synthetic 
fusions [19], the co-expression of transcription factors 
was demonstrated as an interesting alternative to induc-
tion by methanol. In addition, numerous methanol-inde-
pendent expression systems have been developed and 
tested with promising results such as PGTH1, PCAT1, PTHI11 
PHpFMD or PTEF, among others [20–25].

Historically, RPP improvements have been mainly 
obtained through strain and promoter system engineer-
ing [16, 26–29]. Multiple clones with different expression 
cassettes or random integration variants with the same 
expression cassette are tested and compared in parallel in 
shake flasks or microtiter plates. This approach is consid-
ered fast and cost-effective; however, most testing plat-
forms do not allow control of key bioprocess parameters 
such as dissolved oxygen, pH, as well as growth and feed 
rates. Since these parameters affect target protein expres-
sion, selection of a “best performing” clone might not 
always be optimal. Accordingly, the performance of the 
production clones candidates should be compared in cul-
tivation platforms such as bench-top bioreactors [22, 30, 

31], and/or alternative systems that allow controlled sub-
strate delivery. Using bioreactors, production processes 
can be carried out applying optimal ranges of the key bio-
process parameters [32, 33]. Chemostat systems, where 
cultures are maintained at non-dynamic, steady-state 
conditions, have become a valuable tool for bioprocess 
characterization and further optimization [34]. In this 
way, a full kinetic characterization of the candidate cell 
factories can be performed. Furthermore, interestingly, 
sampling for ‘omics’ analyses can be reliably carried out 
on cells from chemostat, where cultures have constant 
key process parameters, and the cell population is highly 
homogeneous [34].

Studies including precise strain characterization by 
chemostat cultivations, have revealed how the specific 
growth rate (µ) significantly affects recombinant protein 
production (RPP) rates [6, 15, 35–40]. Importantly, the 
relationship between µ and the specific production rate 
(qp), also called production kinetics, is dependent on both 
the expression system used and the recombinant protein 
expressed. In previous studies, García-Ortega et al. [37], 
and Nieto-Taype et  al. [38] described a linear µ-qp rela-
tionship when producing a human Fab, as well as the 
Candida rugose lipase 1 (Crl1), respectively, both under 
the control of the constitutive PGAP. The same trend was 
observed for the production of Lipase B from Candida 
antarctica using the constitutive PGK promoter [41]. 
These authors concluded that since the constitutive PGAP 
has a pivotal role in the growth-associated glycolysis, 
therefore, one should expect the RPP to be growth-cou-
pled. On the other hand, curved/non-linear µ-qp trends 
were observed [21, 39, 42], suggesting non-coupled tran-
scriptional regulation, or bottlenecks in the protein pro-
cessing pathway. In particular, Garrigós-Martínez et  al. 
[39] remarked that the µ-qp bell-shaped trend observed 
in the PAOX1 regulated production of Crl1 was probably 
caused by an alternative transcriptional regulation. This 
conclusion was based on the determination that at differ-
ent µ, target protein production profiles and the relative 
transcripts did not present the usual linearity of growth-
coupled expression systems.

In this work, the performance characterization of two 
novel expression systems for RPP with P. pastoris are 
based on: (1) The new PDF promoter (PPDF, a commer-
cial variant of the Hansenula polymorpha FMD promoter 
[25, 43], which drives strong transcription by simple 
methanol-free de-repression and can be also further 
induced with methanol), and (2) UPP promoter (PUPP, 
a constitutive commercial variant of a Pichia promoter 
called GCW14, [23]). Both promoter systems have been 
thoroughly studied and compared with PGAP, the most 
well characterized constitutive promoter, considered a 
reference standard for methanol-free expression systems. 
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Expression strains for the lipase B from Candida antarc-
tica (CalB) were constructed, all with the same parental 
strain, gene dosage and identical vectors, except for the 
promoter sequence driving CALB gene expression. To 
compare these expression systems, a set of chemostat 
cultivations designed to assess the effect of different µ 
values on the production kinetics was performed. Fur-
thermore, CALB transcript levels were determined and 
compared to the expression levels for each condition 
tested in chemostat. Finally, working at the µ ranges that 
generated the best results in chemostat mode, the same 
selected clones were cultivated in 15  L fed-batch pro-
cesses to evaluate their performance in this operational 
mode.

Results and discussion
Strain generation, screening and gene dosage
Isogenic clones were generated to compare the per-
formance of the promoters PUPP, PPDF and PGAP for the 
CalB expression as a model recombinant protein. Con-
sidering the potential clonal variability often observed 
in Pichia clone generation methods, care was taken to 
select a clone for each expression system with a single 
expression cassette integrated into the genome [29, 44]. 
Subsequently, around 90 individual transformants were 
analyzed in a high-throughput screen based on deep well 
plate (DWP) system, to develop a “landscape” of expres-
sion data for clone characterization according to Weis 
et al. [45]. Putative single-copy integration transformants 
for each of the different promoter constructs were picked 
from the majority of transformants which showed very 
similar lipase activity in the supernatant after cultivation 
and induction in 96-DWP and an initial screen measur-
ing CalB activity of secreted reporter enzyme. Among the 
discarded clones, secreting higher amounts of CalB were 
suspected to be associated with multicopy or random 
integration events; while lower activity observed in some 
clones might be from with detrimental effects exerted by 
ectopic integration [46]. Subsequently, a second round of 
DWP screening among the potential single copy integra-
tion candidates was performed, which were tested at least 
the biological triplicates (data presented on Additional 
file  1: Figure S1A, B, C). Therefore, for the candidate 
clones, gene dosage was determined by droplet digital 
PCR (ddPCR, data presented on Additional file 2: Tables 
S2A, B) to confirm each construct only contained a sin-
gle-copy of the respective expression vector in the Pichia 
genome. Confirmed single copy clones for each expres-
sion system presenting an average CalB production were 
therefore selected to start the expression systems char-
acterization, thus ensuring that production differences 
are only a result of the effect of each promoter’s specific 

influence on CalB recombinant expression, and not due 
to a different gene dosage.

Physiological state comparison of the P. pastoris clones 
harboring different expression system
Chemostat cultivations were performed with one 
selected CalB production clone for each of the three dif-
ferent expression systems (GAP-C, PDF-C and UPP-C). 
This comparison test was performed at three different 
dilution rates (D): 0.05  h−1, 0.10  h−1 and 0.15  h−1. This 
characterization allowed to determine the range of dilu-
tion rate to significantly improve CalB production in sub-
sequent fed-batch (FB) cultivations.

PUPP and PPDF clones had significantly higher expres-
sion levels than those based on PGAP. Furthermore, 
high levels of recombinant protein expression have 
been shown to cause a burden on the protein secre-
tion machinery likely due to an overload of the process-
ing capacity [47, 48]. Therefore, an impact of the three 
expression systems on the physiological state was tested 

Fig. 1  Physiological state indicators of Pichia pastoris CalB producer 
clones-GAP-C, PDF-C, UPP-C—in chemostat cultivations. a Specific 
glycerol consumption rate (qs), overall glycerol-to-biomass yield 
(YX/S*). b Specific oxygen uptake rate (qO2), specific carbon dioxide 
production rate (qCO2) and respiratory quotient (RQ). Error bars 
represent the standard deviation of two biological replicates



Page 4 of 12Garrigós‑Martínez et al. Microb Cell Fact           (2021) 20:74 

in chemostat cultivations by analyzing glycerol and O2 
consumption rates, and CO2 production rates (Fig. 1).

In this regard, no significant differences were evident 
across the D tested. The specific glycerol consumption 
rate (qs) and overall biomass-to-substrate yield (YX/S*) 
were rather similar. As expected, qs increases linearly 
over the D, whereas YX/S* values were constant (only 
slight differences could be observed at the highest D). 
All the clones presented similar specific CO2 produc-
tion rates (qCO2) and specific O2 consumption rates (qO2) 
and followed standard linear trends. Consequently, simi-
lar respiratory quotient values were exhibited by all the 
clones studied (RQ, i.e. about 0.62, see Fig. 1b). Based on 
the analysis at macrokinetic level, it can be stated that the 
higher CalB production provided by the new generation 
expression systems based on the promoters PPDF or PUPP 
did not alter any of the studied physiological parameters 
compared to the GAP-C, which presents lower CALB 
expression levels.

Novel expression systems outperform PGAP‑based CalB 
production
Compared to PGAP, both of the new promoters resulted 
in notably higher qp values, between 4 and ninefold 
higher at any D (Table 1). UPP-C also had qp values sig-
nificantly higher than PDF-C at the lowest and middle D. 
At the highest D, UPP-C was similar to PDF-C, with only 
slightly higher qp.

Different production kinetic profiles, qp at different D, 
were obtained for all three expression systems compared 
(Fig.  2a). UPP-C presented a bell-shape profile with a 

maximum at mid D, 0.10 h−1. On the other hand, PDF-C 
generated a clearly saturated profile. And, GAP-C had a 
relatively linear pattern, with a slight saturation trend at 
higher D values. This result differs from other examples 
reported using PGAP in which qp clearly increases linearly 
with D [37, 38]. Thus, these results indicate that produc-
tion kinetics, in most cases, are protein dependent.

Another important key parameter to be considered 
is the overall product to biomass yield (YP/X*); it deter-
mines the overall capacity of cells to produce recombi-
nant protein under certain conditions. The PUPP and PPDF 
expression systems are similar to other systems where 
increasing D is detrimental for YP/X* [38, 39], as shown 
in Fig.  3. As observed with qp, the biggest difference 
between UPP-C and PDF-C YP/X* values was demon-
strated at the lowest D, yet similar at higher D. Impor-
tantly, the highest YP/X* values for UPP-C and PDF-C 
were notably higher than those obtained with the GAP-C 
(i.e. up to 8.9-fold higher with UPP-C at 0.05 h−1) (Fig. 3).

Based on CalB production-related parameters qp and 
YP/X*, both novel expression systems should be consid-
ered good candidate promoters to produce recombinant 

Table 1  Comparison of the main production parameters 
obtained in chemostat and fed-batch cultures with the producer 
clones at different specific growth rates (µ)

Clone Operational 
mode

Nominal µ Experimental 
µ

qp YP/X*

h−1 h−1 AU gx
−1 h−1 AU gx

−1

GAP-C Chemostat 0.050 0.046 1.16 24.9

0.100 0.103 2.24 21.9

0.150 0.149 2.74 18.4

PDF-C Chemostat 0.050 0.047 7.20 153

0.100 0.100 10.8 108

0.150 0.155 10.8 70.1

Fed-batch 0.050 0.042 9.20 219

0.100 0.087 13.1 150

UPP-C Chemostat 0.050 0.052 10.3 197

0.100 0.106 12.9 122

0.150 0.156 11.4 72.7

Fed-batch 0.050 0.051 11.1 217

0.100 0.084 9.95 102

Fig. 2  Comparison of the overall CalB product-to-biomass yield 
(YP/X*) in chemostat cultivations for the three expression systems 
tested. Error bars represent the standard deviation of two biological 
replicates
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proteins. Different conditions could be optimal depend-
ing on the objective: to reach higher product titer, or 
maximal productivity. If the objective is the highest pro-
tein titer, the lowest D should be selected [38, 39, 49], 
especially in the case of UPP-C, where YP/X* reductions 
with D were more pronounced than with PDF-C. On 
the other hand, in order to maximize qp, the conditions 
recommended for high production should be at a D of 
0.10 h−1, observed most markedly with PDF-C, where D 
has a bigger impact (Fig. 2a).

The new promoters enable increased tunability 
of recombinant protein expression processes in Pichia 
pastoris
mRNA levels are not always directly correlated with the 
level of recombinant protein production obtained [22, 
38, 39], especially since high CALB transcript levels 
can cause enhanced cellular stress [50]. In the present 
work, variable CALB transcript levels were observed in 
all three expression systems compared: GAP-C, UPP-
C, and PDF-C. As shown in Fig. 2b, a linear profile of 
CALB relative transcript levels (RTL) was observed 
across D for GAP-C, confirming the widely reported 
constitutive and growth-coupled regulation pattern 
with PGAP. For this GAP-C, even both RTL-D and qp-D 
present similar profiles, a slight saturation trend of qp 
can be observed at high D (Fig. 2a), likely because the 
low production rates observed with PGAP are not likely 
to overload of the processing and secretory capacity. 
For UPP-C, only slight differences in CALB RTL were 

observed among the different D tested. Therefore, the 
regulation of CALB expression under PUPP control 
should be considered growth independent. Strikingly, 
the CALB mRNA expression patterns do not correlate 
with the bell-shaped qp profile described in the previ-
ous section (highest at a 0.10 D, Fig. 2a). For the PDF-C, 
RTL presents a bell-shape trend, while the qp-D profile 
presents a saturation pattern. Therefore, according to 
the RTL results (Fig.  2b), the PPDF-based expression 
system exhibits a growth-rate dependent regulation, 
which thus can be considered a system with a promis-
ing tunable expression pattern.

As presented in Fig.  4, the comparison of CALB 
expression regulated by PUPP and PPDF, relative to the 
PGAP, illustrates an interesting contrasting behavior. The 
weaker, growth-coupled, PGAP-based expression system 
performs better at higher µ; demonstrated here with 
the single-copy expression strain. In this case, the high-
est target transcription levels may result in a recombi-
nant protein “burden” can still be sorted, or processed, 
properly in the ER. On the other hand, with both novel 
promoters, CALB transcription levels and specially qp 
ratios, decrease over D, thus indicating that high spe-
cific growth rates are detrimental for these more pro-
ductive systems. Both UPP-C and PDF-C generated 
CALB transcripts, as well as secreted protein at signifi-
cantly higher levels than GAP-C. The higher transcript 
levels may be overwhelming the secretory pathway, 
triggering the unfolded protein response (UPR). There-
fore, UPP-C and PDF-C might be better at low and 
medium µ, when most of transcription can generate 
protein, as is demonstrated by the higher productivity 

Fig. 3  a CalB production kinetics (qP vs D) and CALB relative 
transcription levels determined in chemostat cultivations for the 
three expression systems studied. Transcript levels were normalized 
to the levels of the MTH1 transcript, which was used as housekeeping 
gene for the analysis. Error bars represent the standard deviation of 
two biological replicates. b Percentage of CALB relative transcription 
levels respect to the maximum observed for the corresponding 
expression system

Fig. 4  Effect of dilution rate on the qp ratio and the CALB differential 
RTL calculated as log2 fold change relative to GAP-C values. GAP-C 
values were used as a control for ratio calculations. P-values 
(t-test) were calculated in order to determine the CALB expression 
significance between producer clones (* significance level P ≤ 0.05; ** 
significance level P ≤ 0.01)
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rates. Consequently, suitable conditions to balance both 
growth and protein production are needed to improve 
production protocols.

UPR influence on CalB production
In order to assess potential endoplasmic reticulum (ER) 
stress derived from the excessive heterologous pro-
tein production, the expression of key UPR genes were 
analyzed. The reporters selected were two well-known 
ER-resident chaperones, KAR2 and ERO1, and a gene 
product generally considered to be an UPR master regu-
lator, HAC1 [2, 51, 52]. The relative transcription levels of 
these three UPR related genes were measured in UPP-C 
and PDF-C and compared to the GAP-C. Data is pre-
sented as a log2 fold change relative to the GAP-C levels 
(Fig. 5).

Overall, the expression of all three of the UPR reporter 
genes, HAC1, KAR2 and ERO1, had similar expression 
patterns across all the D rates tested. Their expression 
was the highest when the clones were cultivated at inter-
mediate D of 0.10  h−1, whereas only moderate expres-
sion increases were found at D 0.15  h−1. These results 
are in-line with other published work reporting that not 
only recombinant protein production, but also µ, hav-
ing a significant impact on UPR induction [36, 53]. The 
cited studies are also similar to the data presented here, 
showing unremarkable UPR levels at lower µ, whereas µ 
increases led to UPR upregulation.

Strikingly, the growth-coupled expression of CALB by 
GAP-C was the only case in which the CALB RTLs pre-
sented a similar pattern to the qp. The UPP-C qp values 
mimic the UPR sensor gene expression profiles across 
the D tested, regardless of CALB transcription rates, 
which were rather similar for all the D rates. Therefore, 
UPR might have an influence in subsequent steps of CalB 
processing and secretion. The UPR impact on CALB 
expression is demonstrated by comparing qp and CALB 
RTL values at D 0.10  h−1. In the Fig. 5, UPR-associated 
gene expression is higher for UPP-C (Fig. 5b) than PDF-C 
(Fig.  5a) and may explain why UPP-C qp is higher than 
PDF-C qp at this D despite UPP-C presenting 84% less 
CALB RTL. In this sense, it has been also described that 
the co-expression of protein disulfide isomerase, which 
is also upregulated at higher UPR, enhances active lipase 
production by P. pastoris [54]. Lastly, the comparison 
between two D conditions for PDF-C in continuous culti-
vations supports this hypothesis. At both D 0.05 h−1 and 
D 0.15 h−1, the CALB RTL levels are rather similar. How-
ever, the UPR-related gene expression is growth coupled, 
enhanced at higher D. The increased UPR could be con-
tributing the 50% higher qp observed at the highest D, 
even though the target gene RTL levels are rather similar.

Together, these analyses indicate that qp for CalB in 
P. pastoris is influenced by several factors: heterolo-
gous gene transcription rates, recombinant protein-
associated UPR, and D-associated UPR. Comparing the 
different alternatives for methanol-free expression pre-
sented in this work, it could be observed that the new 
generation constructs, based on the PDF and UPP pro-
moters, allowed to achieve CALB transcription levels of 
up to eightfold higher than with PGAP-regulated expres-
sion, for all the D tested. However, at the high target 
protein expression levels, a direct correlation between 
CALB RTL and qp was not observed. In contrast, higher 
qp values were usually observed at D conditions with 
enhanced expression of UPR-related genes, suggesting 
a relevant impact of UPR on CalB production.

Fig. 5  Transcriptional levels of three different UPR-related genes 
at the different dilution rates. a PDF-C, and b UPP-C (presented as 
a comparison of transcript levels with the levels from the control 
GAP-C, log2 scale). P-values (t-test) were calculated for all the 
genes and conditions in order to determine the gene expression 
significance between producer clones (* significance level P ≤ 0.05)
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Fed‑batch cultures for further scalable bioprocess 
development
Through chemostat cultivations, a systematic characteri-
zation of the three expression systems studied at differ-
ent dilution rates was carried out, generating information 
both at macrokinetic, stoichiometric and transcriptional 
level. From these results, the range of µ that improves 
CalB production were determined in order to achieve 
higher product yields and/or productivities. Ideally, the 
best µ values found in chemostat cultivations should be 
implemented to fed batch cultures (FB), which is cur-
rently the most widely used scalable operational mode 
for industrial production of recombinant proteins. How-
ever, production kinetics may present relevant differ-
ences between the different operational modes [38, 39]. 
Therefore, fed-batch cultivations were also conducted to 
confirm CalB production kinetics pattern determined in 
chemostat cultivations. Carbon-limited fed-batch culti-
vations, the culture strategy usually considered as most 
efficient with P. pastoris methanol free processes, were 
performed with the UPP-C and PDF-C to obtain biomass 
and CalB production profiles (Fig. 6). Accordingly, based 
on the results obtained in chemostat cultures in which 
strong expression systems perform better at mid-low 
µ, the µ of 0.15  h−1 was discarded for further fed-batch 
implementation.

As expected, biomass production of all the cul-
tures presented the targeted exponential profile, 
reaching a maximum between 90 and 100  g  L−1 of 
dry cell weight (DCW), which is considered a stand-
ard endpoint for Pichia high-cell density fed-batch 
(Fig.  6a). CalB production, expressed in activity units 
(kAU), also increased pseudo-exponentially over 
time (Fig.  6b). Product titers obtained at the lowest µ 
tested (~ 0.05  h−1) were substantially higher than with 
the intermediate µ (~ 0.10  h−1), being 38% higher with 
PDF-C and 67% with UPP-C. Therefore, YP/X* val-
ues were also markedly higher at the low µ cultures 
(Table  1). Comparing product-related parameters 
between chemostat and FB cultivations, PDF-C per-
formed better in FB mode (24% higher, on average qp, 
and 41% on average higher YP/X* at the equivalent µ, 
Table 1). On the other hand, UPP-C presented smaller 
differences of qp and YP/X* values at low µ, on average 
below 10%. Strikingly, for the range µ 0.10  h−1, UPP-C 
presented performance parameters were significantly 
worse in FB cultures relative to the chemostat cultures 
(Table 1). With respect to product quality and purity, it 
is worth to mention that the supernatant impurity fin-
gerprints were similar between all four fed-batch culti-
vations; all had very low levels of Pichia native proteins 
secreted to the culture broth. Additionally, as observed 

in the SDS-PAGE presented, no signs of CalB degrada-
tion is observed, indicating protein quality is similar 
between the different expression systems and fed-batch 
cultivations (Additional file 3: Figure S3).

At the end of the batch phase, a twofold higher CalB 
titer was obtained with UPP-C compared to PDF-C. 
This points to a difference in the expression systems 
regulation in presence of excess carbon, a situation that 
only occurs during the batch phase. Whereas, PUPP pre-
sents a constitutive and strong expression in excess of 
C-source, PPDF-regulated expression was repressed and 
increase under C-limiting conditions, such as at the 
end of the batch phase, and during the fed-batch phase. 
Thus, PPDF generates an interesting tunable expression 
system, allowing simple uncoupling of biomass growth 
and achieving different transcription levels without 
altering the carbon source.

Fig. 6  Fed-batch culture time profiles of Biomass (a) and CalB 
production (b) expressed as cell concentration (g L−1) of dry 
cell weight concentration (DCW) and total activity units (kAU), 
respectively. Vertical lines separate batch and fed-batch phases
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Conclusions
In this study focused on developing methanol-free 
alternatives for RPP with P. pastoris, a macrokinetic 
characterization of two promising expression systems 
were conducted in chemostat cultures, PUPP and PPDF, 
benchmarking their performance with PGAP. In terms of 
substrate and respiration-related parameters, all three 
expression systems behaved similarly, suggesting that the 
potential differences in CalB production does not signifi-
cantly alter the yeast homeostasis in chemostat cultiva-
tions. Overall, the CalB production kinetics with the two 
novel expression systems generated significantly higher 
levels of recombinant protein than the reference, GAP-
C, up to ninefold higher in terms of qp. The differences 
in product-related parameters were primarily attrib-
uted to the significantly higher CALB transcription lev-
els. Interestingly, under carbon-limiting conditions, the 
PPDF-based expression system showed a D-dependent 
tunable expression, while PUPP-regulated expression was 
more constant, independent of the growth rates tested. 
Furthermore, an UPR up-regulation was noted most 
markedly with the UPP-C at D = 0.1 h−1. At this dilution 
rate, the three UPR reporter genes monitored were at 
their highest level. Notable is that the highest qp was also 
at this D condition.

The chemostat results were used to design strategies 
based on the µ ranges that provide the best production 
results for its further implementation in fed-batch culti-
vations. Thus, both novel expression systems, based on 
PUPP, PPDF, were also tested in this operational mode. The 
difference in regulation patterns was reproduced in a fed-
batch mode as UPP-C had around twofold higher CalB 
production than PDF-C at the end of batch phase, illus-
trating a strong constitutive CALB expression under PUPP 
regulation. On the other hand, highest CALB expression 
in the PDF-C was obtained under C-limiting conditions, 
in which the expression is derepressed, thus presenting 
an interesting tunable expression pattern. Concerning 
the production kinetics, UPP-C showed much better per-
formance at low µ in fed-batch, as the qp at this µ out-
performed the levels obtained at mid µ by 11%. PDF-C 
expression, on the other hand, was enhanced at mid µ, 
as qp was significantly higher than under low µ condi-
tions. In all cases, no significant difference in the prod-
uct quality was observed among the different fed-batch 
cultivations performed, presenting for all cases low lev-
els of protein impurity fingerprints and no signs of CalB 
degradation.

This work, testing alternative promoter designs, vali-
date the approach that confirms the transferability from 
small scale screenings to its characterization in chemo-
stats. Most importantly, outcomes obtained during the 
characterization should be considered as highly relevant 

to establish further strategies to be finally industrially 
implemented at large scale. Furthermore, these produc-
tion conditions should also be taken into consideration 
for further improvements of the host at a molecular 
level, closing the duty cycle of synthetic biology based 
on iterative Design-Build-Test-Learn steps (DBTL). The 
successful results obtained in this work, are expected to 
make this approach transferable to other processes based 
on other expression systems and also different microbial 
cell factories towards rationally improve the efficiency of 
bioprocesses.

Materials and methods
Clone construction, selection and expression testing
The parental strain, P. pastoris BSYBG11(aox1-/MutS), 
which is a BioGrammatics (Carlsbad, CA) Pichia pasto-
ris BG11 strain, deposited at Bisy in Austria, was trans-
formed with each of the expression vectors, only differing 
in the respective promoters. This strain is derived from 
the BioGrammatics K. phaffii (P. pastoris) strain BG10 
but with a slower methanol metabolization phenotype, 
MutS [55]. The transformation method to express Can-
dida antarctica lipase B (CalB) under the regulation of 
PGAP, PUPP and PPDF has been described elsewhere [56]. 
Recombinant vectors with the selected promoters were 
based on pPpT4_Alpha_S vector [57]. To avoid biasing 
of the results by transformant variability, low amounts of 
the linearized plasmid DNA (< 1 µg of DNA) were used 
to avoid multi copy expression cassette integration as 
described elsewhere [29, 44].

Candidate clones expression screening was done at 
microscale cultures in deep well plates (DWP´s), as 
described by Krainer et al. [58] with minor modifications. 
During the induction phase, methanol from BMM2 and 
BMM10 was replaced with glycerol as the carbon source 
with 1% and 5% glycerol (w/v), respectively. All media 
were buffered at pH 7.0.

An initial screen in DWP’s allowed to select the pro-
ducer candidates from the clonal variability after trans-
formation. Furthermore, a second screening employing 
DWP’s with seven replicates per clone was used to vali-
date previous results with biological replicates towards 
the selection of producer clones that integrated only 
one copy of the desired expression cassettes. These 
final clones were used in the chemostat and fed-batch 
cultivations.

Gene dosage determination
The gene dosage/copy number was determined for 
each selected producer clone using droplet digital PCR 
(ddPCR) as described elsewhere [38, 39]. ddPCR was 
performed with primers to amplify the CALB gene pre-
sent in the expression cassette, as well as with primers 
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for amplification of the Actin 1 gene (ACT1) as a refer-
ence. The ACT1 gene had been demonstrated before, and 
thus to be a reference for single copy gene of the haploid 
P. pastoris. The list of primers used is presented as Addi-
tional file 2: Table S2A.

Total RNA extraction, cDNA synthesis and transcript level 
determination
RNA was isolated from 1 mL culture samples taken from 
the chemostat culture broth as defined by Landes et  al. 
[22]; RNA was prepared using the SV Total RNA Isola-
tion System (Promega, Madison, Wisconsin, US) follow-
ing the manufacturer’s instructions.

RNA integrity was checked by agarose electrophoresis 
and RNA concentration was measured with Nanodrop 
2000 (Thermo Scientifc™, Waltham, MA, US).

cDNA was synthetized using iScript™ cDNA Synthesis 
kit (Bio-Rad, Hercules, CA, USA), following the manu-
facturer’s instructions. Primers were designed to analyze 
the relative transcript levels (RTL) of the following target 
genes by qPCR: CALB, KAR2 and ERO1 (two ER-resident 
chaperones), and HAC (UPR master regulator). MTH1 
gene was used as housekeeping gene for the transcrip-
tional analysis. The qPCR procedure, including equip-
ment, qPCR master mix solution and housekeeping gene 
is detailed in prior work [39]. The annealing-extension 
temperature was adjusted to 59 °C. The list of primers 
used is presented as Additional file 2: Table S2A.

Chemostat cultivations
Chemostat cultivations were performed in duplicate, all 
in 2 L Biostat B plus Bioreactors (Sartorius Stedim, Goet-
tingen, Germany) according to García Ortega et al. [37]. 
Batch and chemostat media compositions are stoichio-
metrically identical to the detailed in the reference [37]; 
however, the concentrations were reduced by half.

Cultivation conditions were monitored and controlled 
at the following set points: pH, 5.0 with addition of 15% 
(v/v) ammonium hydroxide; temperature, 25  °C; stir-
ring rate, 700  rpm; air flow, 0.8  vvm and pO2 values 
were variable depending on the dilution rate. pO2 values 
were above 20% in all conditions tested. An exhaust gas 
condenser with cooling water at 4  °C minimized mass 
loses by water evaporation and other possible volatile 
compounds.

A broad range of dilution rates were covered for the 
three expression systems tested. Taking into considera-
tion that 0.19  h−1 was the P. pastoris µmax of GAP-C at 
25 °C (data not shown), the following dilution rates were 
used: 0.05 h−1, 0.10 h−1 and 0.15 h−1 (dilution rates were 
tested as low, middle and high growth rate conditions, 
respectively). In order to ensure that the steady state was 
reached, the stability of the parameters of interest were 

monitored from the third residence time until the fifth 
one, where samples were taken.

Fed‑batch cultivations
Fed-batch cultivations were performed in duplicate, all 
in New Brunswick BioFlo 510 bioreactor (Eppendorf, 
Germany), connected to BioCommand Control soft-
ware. Batch media composition was the same as that 
used in the chemostat runs, stoichiometrically identical 
to that used in prior work [49], except glycerol, instead 
of glucose, was used in the fed-batch feeding. The cul-
tures were grown at 25  °C under overpressure (0.2  bar) 
and had a 7.5 L starting volume, including 1 L seed. The 
pH was kept at 5.0 by the automated addition of 12.5% 
NH4OH. Dissolved oxygen (DO) was maintained above 
30% of air saturation with the automatic control of stirrer 
speed (400–700 rpm), constant airflow 10 L  min−1, and 
enriched with O2 when needed (0–50% of total inlet flow 
rate).

Glycerol feeding was started upon depletion of batch 
medium glycerol. An exponential pre-programming 
feeding rate was performed to maintain the specific 
growth rate (0.05 h−1 or 0.10 h−1) constant at the selected 
set-point. All cultivations were grown under carbon-
limiting conditions. The procedure is described in detail 
elsewhere [49].

Biomass determination
Biomass concentrations were measured in triplicate as 
DCW values, as described elsewhere [59]. The relative 
standard deviation (RSD) of the measurements was about 
4%.

Quantification of the carbon source and byproducts
The concentration of both glycerol and the potential fer-
mentation byproducts, were measured by HPLC. The 
column and the program used are described elsewhere 
[60]. RSD was invariably less than 1%.

Off‑gas analyses
A BlueInOne Cell gas analyzer (BlueSens, Herten, Ger-
many) was used for monitoring the CO2 and O2 molar 
fraction of the chemostat cultivations off-gas. Off-gas 
pressure and humidity measurements were used to cal-
culate the oxygen uptake rate (OUR), carbon dioxide evo-
lution rate (CER), and their corresponding specific rates 
(qO2 and qCO2) and respiratory quotient (RQ), as previ-
ously described. RSD was less than 5% in all cases.

Enzymatic analyses
CalB activity was determined by an esterase activity 
assay, similar to the assay described by Krainer et al. [61]. 
Briefly, 100  μL of culture supernatant was mixed with 
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900  μL of fresh assay solution containing 4  mM p-NPB 
in 300  mM Tris–HCl, pH 7.4, 1% acetone. The absorb-
ance increase at 405 nm was monitored at 30 °C for 2 min 
(Specord 200 Plus spectrophotometer from Analytic Jena 
Germany). One activity unit was defined as the amount 
of enzyme needed to release 1 μmol of p-nitrophenol per 
minute under assay conditions. RSD was less than 4%.

SDS-PAGE analysis were performed with the culture 
supernatants collected during the bioreactor cultiva-
tions, which were diluted into water prior to loading 
into precast 4–20%  kD Criterion TGX Stain-Free Gel 
(Biorad, Hercules, CA, USA). Fifteen µL of the diluted 
samples were mixed with 5 µL of 4 × loading buffer (20% 
glycerol, 4% SDS, 0.3  mM bromophenol blue (Merck), 
10% β-mercaptoethanol, 0.1  M Tris, pH 6.8), and incu-
bated at 95  °C for 5  min. Samples were cooled, centri-
fuged quickly, and 19 µL loaded into 4–20% kD Criterion 
TGX Stain-Free Gel together with Precision Plus Protein 
molecular weight marker (Biorad, Hercules, CA, USA). 
The visualization of the gel was performed using the Gel 
Doc EZ (Biorad, Hercules, CA, USA).

Process parameter determination, consistency test 
and data reconciliation
Mass balance and stoichiometric equations
All equations used to calculate yields and rates are based 
on mass balances at continuous and fed-batch opera-
tion and can be found elsewhere [11, 37]. The P. pasto-
ris elemental composition grown on glycerol as the sole 
C-source was determined as previously reported [62]. 
Carbon and electron balances were checked and less than 
5% of deviation was observed prior to reconciliation.

Consistency test and data reconciliation
Measurement consistency was checked by using the 
standard test with carbon and electron balances as con-
straints. Both online and offline measurements enabled 
the calculation of five key specific rates in the black-box 
process model: biomass generation (μ), glucose uptake 
rate (qs), product generation rate (qp), oxygen uptake 
rate (qO2) and carbon dioxide production rate (qCO2). The 
method used for this purpose is described in detail else-
where [11].
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Additional file 1: Table S1. Figures that present as landscapes the 
second round of clone screening results performed for the expression 
systems studied. Mean values for each and standard deviations are plotted 
and expressed in terms of activity units (AU) normalized per biomass 

concentration (OD600). S1A–PGAP-based clone GAP-C; S1B–PPDF-based 
clone PDF-C; S1C–PUPP-based clone UPP-C.

Additional file 2: Table S2.A, table listing the primer pairs used for gene 
dosage analyses and relative transcription levels (RTL) determination by 
means of ddPCR and qPCR, respectively. B, table that presents the gene 
dosage determination of CalB producer clones by digital droplet PCR 
(ddPCR). Analyses were performed by triplicates, using Actin gene (ACT1) 
as reference. Two positive controls which contain 3 and 5 copies of the 
expression cassette for Candida rugosa lipase 1 (CRL1) were also analyzed 
as controls.

Additional file 3: Figure S3. Figure that presents the analysis of the prod‑
uct quality by SDS-PAGE. Samples from fed-batch cultivations—PDF-C 
and UPP-C—run at A: µsp = 0.10 h−1 and B: µsp = 0.05 h−1 were analyzed. 
Different samples obtained at different feeding time (FT) supernatants 
were loaded on SDS-PAGE. BSA standards at different concentrations were 
also loaded in SDS-PAGE as reference (lanes 1–4). A. µsp = 0.10 h−1.PDF 7: 
17h FT; PDF 8: 18h FT; PDF 9: 20h FT; PDF 10: 21h FT; UPP 8: 19h FT; UPP 9: 
21h FT; UPP 10: 22h FT. B. µsp = 0.05 h−1. PDF 1: Batch end, PDF 5: 19h FT; 
PDF 7: 24h FT; PDF 8: 27h FT; PDF 9: 36h FT; PDF 10: 41h FT; PDF 11: 43h FT; 
UPP 1: Batch end, UPP 7: 27h FT; UPP 8: 37h FT; UPP 9: 40h FT; UPP 10: 42h 
FT; UPP 11:44h FT.
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